研究生: |
黃寶儀 Pao-Yi Huang |
---|---|
論文名稱: |
於高壓二氧化碳中進行對苯二甲酸氫化反應之研究 Study on the Hydrogenation of Terephthalic Acid with High Pressure Carbon Dioxide |
指導教授: |
談駿嵩
Chung-Sung Tan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 對苯二甲酸 、氫化 、二氧化碳 |
外文關鍵詞: | Terephthalic acid, Hydrogenation, Carbon dioxde |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對苯二甲酸(Terephthalic Acid,簡稱TPA)為聚酯工業的主要原料,主要用於生產聚對苯二甲酸二乙醇酯(Poly(ethylene terephthalate) ,簡稱PET)。由於PET具有苯環,非生物可分解之高分子,在近年來大量使用下,PET已造成環境相當大的負擔。1,4-對環己烷二甲酸(1,4-Cyclohexanedicarboxylic Acid,簡稱1,4-CHDA)為TPA經苯環氫化過後所得之產物,若以1,4-CHDA為單體進行聚合反應,即可得到不含苯環之生物可分解高分子聚合物。
在氫化反應過程中,由於氫氣在液體溶劑中之溶解度不高,且氣液間存在著相當大之界面質傳阻力,此外在液體內部的擴散阻力也會對反應速率造成限制。本研究經篩選後選擇以異丙醇為溶劑,10 wt% Pd/C為觸媒,在半批次操作中進行TPA氫化反應。研究發現在不同溶劑中,1,4-CHDA的產率依序為:水>異丙醇>10 %二氧化碳膨脹異丙醇。可能的原因為TPA氫化反應在介電常數較高的狀況下,反應速率較快。水的介電常數高於異丙醇,而加入高壓二氧化碳因為Solvent Cluster的現象,影響溶劑的介電常數,而導致1,4-CHDA的產率下降。也有可能因為高壓二氧化碳與氫氣發生逆水煤氣變換反應,產生CO造成貴金屬觸媒的毒化。亦或者加入高壓二氧化碳形成膨脹溶液,對氫氣溶解度的提升不足以彌補10%氫氣分壓的下降,使TPA氫化反應速率降低,造成1,4-CHDA的產率下降
同在半批次操作下,在超臨界相中進行TPA氫化反應,利用超臨界流體與氫氣可形成單一相的特性,進行TPA氫化反應。研究中觀察以壓力、溫度、及加入助溶劑與否為變數。除以常見的超臨界二氧化碳為溶劑進行TPA氫化反應外,為增加TPA的溶解度以及爲避免CO毒化觸媒的可能性,我們亦使用超臨界丙烷為溶劑進行TPA氫化反應,結果顯示1,4-CHDA的產率仍不高。推測主要的原因為超臨界流體對TPA的溶解度不足,或粉末狀載體觸媒的分散度遠不如在液體溶劑中的分散度。以超臨界二氧化碳為溶劑在降低操作溫度或提高操作壓力後, 1,4-CHDA的產率會明顯的提升,顯示經由溫度或壓力的調整,的確可以提升TPA的溶解度,加快TPA氫化反應速率。但加入1 g異丙醇作為助溶劑的成效並不顯著。另觀察相較於以水為溶劑,以超臨界流體為溶劑時,1,4-CHDA之Trans/Cis比值會大幅的提升。
在以水為溶劑的狀況下採用奈米顆粒觸媒時,期望因奈米顆粒觸媒之表面活性增加及觸媒內部擴散阻力下降,因而可提升TPA氫化反應速率。但因Pd奈米粒子本身較不穩定,當以PVP為保護劑時,受到TPA水溶液酸性的影響,可能造成Pd奈米粒子更不穩定,TPA氫化反應速率反而下降,導致1,4-CHDA的產率降低。此外亦有可能因為Pd奈米顆粒觸媒對苯環氫化的選擇性較差,造成1,4-CHDA的產率下降。與奈米顆粒觸媒相較之下,氫氣原子在載體觸媒上會有Spillover現象發生,可增加氫氣的吸附量,提高反應的機會,且載體與金屬觸媒之間的作用力,影響觸媒的活性或選擇性,亦可能為相較於Pd奈米顆粒觸媒,Pd/C載體觸媒效果佳之原因。
Augustine, R. L. Heterogenous Catalysis for the Synthetic Chemist. Marcel Dekker, 1995.
Baiker, A. Supercritical Fluids in Heterogeneous Catalysis. Chem. Rev. 1999, 99, 453-473.
Bezanehtak, K.; Combes, G. B.; Dehghani, F.; Foster, N. R. Vapor- Liquid Equilibri um for Binary System of Carbon Dioxide+Methanol, Hydrogen+Methanol, and Hydrogen+Carbon Dioxide at High Pressure. J. Chem. Eng. Data. 2002, 47, 161-168.
Burgener, M.; Furrer, R.; Mallat, T.; Baiker, A. Hydrogenation of Citral over Pd/Alumina: Comparison of “Supercritical” CO2 and Conventional Solvents in Continuous and Batch Reactor. Appl. Catal. A 2004, 268, 1-8.
Chan, J. C.; Tan, C. S. Hydrogenation of Tetralin over Pt/γ-Al2O3 in Trickle-Bed Reactor in the Presence of Compressed CO2. Energy Fuels 2006, 20, 771-777.
Chandler, k.; Deng, F.; Dillow, A.; Liotta, C. L.; Eckert, C. A. Alkylation Reactions in Near-Critical Water in Absence of Acid Catalysts. Ind. Eng. Chem. Res. 1997, 365, 5175-5179
Chang, C. J.; Day, C. Y.; Ko, C. M.; Chiu, K. L. Densities and P-x-y Diagrams for Carbon Dioxide Dissolution in Methanol, Ethanol, and Acetone Mixtures. Fluid. Phase. Equilib. 1997, 131, 243-258.
Chen, Y. C.; Tan, C. S. Hydrogenation of p-Chloronitrobenzene by Ni-B Nanocatalyst in CO2-Expanded Methanol. J. Supercri. Fluids 2007, 41, 272-278.
Chiang, T. C.; Chan, J. C.; Tan, C. S. Alkylation of Toluene with Isopropanol over Cld Modified HZSM-5 under Atmospheric and Supercritical Operations. Ind. Eng. Chem. Res. 2003, 42, 1334-1340.
Chouchi, D.; Gourgouillon, D.; Courel, M.; Vital, J.; Ponte, M. N. The Influence of Phase Behavior on Reactions at Supercritical Conditions: The Hydrogenation of α-Pinene. Ind. Eng. Chem. Res. 2001, 40, 2551-2554.
Combes, G.; Coen, E.; Dehghani, F.; Foster, N. Dense CO2 Expanded Methanol Solvent Sysytem for Synthesis of Naproxen via Enantioselective Hydrogenation. J. Supercri. Fluids 2005, 36, 127-136.
Devetta, L.; Giovanzana, A.; Canu, P.; Bertucco, A.; Minder, B. J. Kinetic Experiments and Modeling of a Three-Phase Catalytic Hydrogenation Reaction in Supercritical CO2. Catal. Today 1999, 48, 337-345.
Fan, L.; Nakamura, I.; Ishida, S.; Fujimoto, K. Supercritical-Phase Alkylation Reaction on Solid Acid Catalysts: Mechanistic Study and Catalyst Development. Ind. Eng. Chem. Res. 1997, 36, 1458-1463.
Fujita, S.; Akihara, S.; Zhao, F.; Liu, R.; Hasegawa, M.; Arai, M. Selective Hydrogenation of Cinnamaldehyde Using Ruthenium- Phosphine Complex Catalysts with Multiphase Reaction Systems in and under Pressurized Carbon Dioxide:Signficance of Pressurization and Interfaces for the Control of Selectivity. J. Catal. 2005, 236, 101-111.
Hemminger, O.; Marteel, A.; Mason, M. R.; Davies, J. A.; Tadd, A. R.; Abraham, M.A. Hydroformylation of 1-Hexene in Supercritical Carbon Dioxide Using a Heterogeneous Rhodium Catalyst. 3. Evaluation of Solvent Effect. Green Chem. 2002, 4, 507-512.
Hirai, H.; Yakura, N.; Seta, Y.; Hodoshima, S. Characterization of Palladium Nanoparticles Protected with Polymer as Hydrogenation Catalyst. React. Funct. Polym. 1998, 37, 121-131
Hitzler, M. G.; Poliakoff, M. Continuous Hydrogenation of Organic Compounds in Supercritical Fluids. Chem. Commun. 1997, 17, 1667-1668.
Hitzler, M. G.; Smail, F. R.; Ross, S. K.; Poliakoff, M. Friedel-Crafts Alkylation in Supercritical Fluids: Continuous, Selective and Clean. Chem. Commun. 1998, 3, 359-360.
Hitzler, M. G.; Smail, F. R.; Ross, S. K.; Poliakoff, M. Selective Catalytic Hydrogenation of Organic Compounds in Supercritical Fluids as a Continuous Process. Org. Process Res. Dev. 1998, 2, 137-146
Hiyoshi, N.; Mine, E.;Rode, C. V.;Sato, O.; Shirai, M. Low Temperature Hydrogenation of Tetralin over Supported Rhodium Catalysts in Supercritical Carbon Dioxide Solvent. Appl. Catal. A 2006, 310, 194-198.
Hwang, C. B.; Fu, Y. S.; Lu, Y. L.; Jang, S. W.; Chou, P. T. Synthesis, Characterization, and Highly Efficient Catalytic Reactivity of Suspended Palladium Nanoparticles. J. Catal. 2000, 195, 336-341
Jin, H.; Subramaniam, B. Homogeneous Catalytic Hydroformylation of 1-Octene in CO2-expanded Solvent Media. Chem. Eng. Sci. 2004, 59, 4887-4893.
Kho, Y. W.; Conrad, D. C.; Knutson, B. L. Phase Equilibria and Thermophysical Properties of Carbon Dioxide-expanded Fluorinated Solvents. Fluid Phase Equilib. 2003, 206, 179-193.
Kordikowski, A.; Schenk, A. P.; Van Nielen, R. M.; Peters, C. J. Volume Expansions and Vapor-Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents. J. Supercri. Fluids 1995, 8, 205-216.
Kuo, T. W.; Tan, C. S. Alkylation of Toluene with Propylene in Supercritical Carbon Dioxide over Chemical Liquid Deposition HZSM-5 Pellets. Ind. Eng. Chem. Res. 2001, 40, 4724-4730.
Lang, X.; Akgerman, A.; Bukur, D. B. Steady State Fisher-Tropsch Synthesis in Supercritical Propane. Ind. Eng. Chem. Res. 1995, 34, 72-77.
Lee, D. S.; Liu, T. K. Characteristics of Nanosized Ruthenium Metal by Chemical Reduction Method. J. Non-Cryst. Solids 2002, 311, 323-327
Liu, Q. S.; Takemura, F.; Yabe, A. Solubility of Hydrogen in Liquid Methanol and Methyl Formate at 20℃ to 140℃. J. Chem. Eng. Data. 1996, 41, 1141-1143.
Lopez-Castillo, Z. K.; Flores, R.; Kani, I.; Fackler Jr, J. P.; Akgerman, A. Evaluation of Polymer-Supported Rhodium Catalysts in 1-Octene Hydroformylation in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2003, 42, 3893-3899.
Lu, Z.; Liu, G.; Phillips, H.; Hill, J. M.; Chang, J.; Kydd, R. A. Palladium Nanoparticle Catalyst Prepared in Poly(Acrylic Acid)-lined Channels of Diblock Copolymer Microsphere, Nano Lett. 2001, 1, 683-687
Machida, H.; Kedo, K.; Zaima, F. US Patent 6,541,662 to Mitsubishi Gas Chemical Company, 2003.
Musie, G.; Wei, M.; Subramaniam, B.; Busch, D. H. Catalytic Oxidations in Carbon Dioxide-Baseed Reaction Media, Including Novel CO2-Expanded Phases. Coord. Chem. Rev. 2001, 219, 789-820.
Page, S. H.; Goates, S. R.; Lee, M. L. Methanol /CO2 Phase Behavilr in Supercritical Fluid Chromatography and Extraction. J. Supercri. Fluids. 1991, 4, 109.
Palani, A.; Pandurangan, A. Esterification of Terephthalic Acid with Methanol over Mesoporous Al-MCM-41 Molecular Sieves. J. Mol. Catal. A 2006, 245, 101-105.
Phiong, H. S.; Lucien, F. P.; Adesina, A. A. Three-Phase Catalyst Hydrogenation of α-Methylstyrene in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2003, 25, 155-164.
Pillai, U. R.; Sahle-Demessie, E.; Young, D. Maleic Anhydride Hydrogenation over Pd/Al2O3 Catalyst under Supercritical CO2 Medium. Appl. Catal. B 2003, 43, 131-138
Poliakoff, M.; Meehan, N. J.; Ross, S. K. A Supercritical Success Story. Chem. Ind. 1999, 19, 750-752.
Radosz, M. Vapor-Liquid Equilibrium for 2-Propanol and Carbon Dioxide. J. Chem. Eng. Data 1986, 31, 43-45.
Rosen, B. I.; Grove, M.; Perterson, D. A. US Patent 5,159,109 to Amoco Corporation. 1992.
Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E. Reactions at Supercritical Conditions: Applications and Fundamentals. AIChE J. 1995, 41, 1723-1778.
Shirai, M.; Rode, C. V.; Mine, E.; Sasaki, A.; Sato, O.; Hiyoshi, N. Ring Hydrogenation of Naphthalene and 1-Naphthol over Supported Metal Catalysts in Supercritical Carbon Dioxide Solvent. Catal. Today 2006, 115, 248-253.
Suzuki, T.; Tsuge, N.; Nagahama, K. Solubilities of Ethanol, 1-Propanol, 2-Propanol and 1-Butanol in Supercritical Carbon Dioxide at 313 K and 333 K. Fluid Phase Equilib. 1991, 67, 213-226.
Tanaka, T.; Kasai, A. US Patent 7,048,978 to Mitsubishi Chemical Corporation. 2006.
Tateno, Y.; Sano, T.; Tanaka, K.; Magara, M.; Okamoto, N.; Kato, K. JP Patent 06-184041 to Towa Kasei Kogyo KK. 1994.
Van den Hark, S.; Harrod, M. Fixed-Bed Hydrogenation at Supercritical Conditions to Form Fatty Alcohols: The Dramatic Effects Caused by Phase Transitions in the Reacctor. Ind. Eng. Chem. Res. 2001, 40, 5052-5057
Wei, M.; Musie, G. T.; Busch, D. H.; Subramaniam, B. CO2- Expanded Solvents:Unique and Versatile Media for Performing Homogeneous Catalytic Oxidations. J. Am. Chem. Soc. 2002, 124, 2513-2517.
Wyatt, V. T.; Bush, D.; Liu, J.; Hallett, J. P.; Liotta, C. L.; Eckert, C. A. Determination of Solvatochromic Solvent Parameters for the Characterization of Gas-expanded Liquids. J. Supercrit. Fluids 2005, 36, 16-22.
Xie, X. F.; Brown, J. S.; Bush, D.; Eckert, C. A. Bubble and Dew Point Measurements of the Ternary System Carbon Dioxide + Methanol + Hydrogen at 313.2 K. J. Chem. Eng. Data. 2005, 50, 780-783.
Xie, X. F.; Liotta, C. L.; Eckert, C. A. CO2-Protected Amine Formation from Nitrile and Imine Hydrogenation in Gas-Expanded Liquids. Ind. Eng. Chem. Res. 2004, 43, 7907-7911.
Xu, D.; Carbonell, R. G.; Kiserow, D. J.; Roberts, G. W. Hydrogenation of Polystyrene in CO2-Expanded Solvents: Catalyst Poisoning. Ind. Eng. Chem. Res. 2005, 44,6164-9170.
Xu, D.; Carbonell, R. G.; Roberts, G. W.; Kiserow, D. J. Phase Equilibrium for the Hydrogenation of Polystyrene in CO2-Swallen Solvents. J. Supercrit. Fluids 2005, 34, 1-9.
Yang, C. C.; Wang Y. Y. ; Wan C. C., Synthesis and characterization of PVP stabilized Ag/Pd nanoparticles and its potential as an activator for electroless copper deposition. J. Electrochem. Soc. 2005, 152, C96-C100.
Yee, C.; Scotti, M.; Ulman, A.; White, H.; Rafailovich, M.; Sokolov, J. One-Phase Synthesis of Thiol-Functionalized Platinum Nanoparticles. Langmuir 1999, 15, 4314-4316
Yin, J.Z.; Tan, C.S. Solubility of Hydrogen in Toluene for the Ternary System H2 + CO2 + Toluene from 305 to 343 K and 1.2 to 10.5 MPa. Fluid Phase Equil. 2006, 242, 111-117.
Yoshida, Y.; Ito, H. JP Patent 07-082211 to New Japan Chem. Co. Ltd., 1995.
Yoshinori, H.; Hiroko, T. JP Patent 2002-020346 to Mitsubishi Chemical Corporation. 2002.
Zhang, Y.; Fei, J.; Yu, Y.; Zheng, X. Silica Immobilized Ruthenium Catalyst Used for Carbon Dioxide Hydrogenation to Formic Acid (I): The Effect of Functionalizing Group and Additive on the Catalyst Performance. Catal. Comm. 2004, 5, 643-646.
Zhao, F.; Ikushima, Y.; Arai, M. Hydrogenation of Nitrobenzene with Supported Platinum Catalysts in Supercritical Carbon Dioxide: Effects of Pressure, Solvent, and Metal Partical Size. J. Catal. 2004, 224, 479-483
余誌傑,“超臨界流體下甲苯及丙烯烷化反應之研究”, 碩士論文,國立清華大學化學工程研究所(2005)