研究生: |
李沛蓁 Lee, Pei Chen |
---|---|
論文名稱: |
可應用於物聯網之十位元低功耗連續近似類比數位轉換器利用輸入電壓適應性電容切換技術 A 10-bit Power-Efficient SAR ADC with Input-Range-Adaptive Switching DAC for Internet of Things |
指導教授: |
謝志成
Hsieh, Chih-Cheng |
口試委員: |
李泰成
洪浩喬 鄭桂忠 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 連續近似類比數位轉換器 、低電壓 、低功耗 |
外文關鍵詞: | SAR ADC, low voltage, low power |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個可應用於物聯網之十位元低電壓及高能源效率連續近似(SAR)類比數位轉換器(ADC)。
為達到良好功率消耗表現,本論文所提出之類比數位轉換器操作於超低電壓的0.35伏特至0.5伏特。此架構重複利用比較器(comparator),在比較雙端輸入電壓值時,同時將輸入電壓轉化成時域資訊,並利用時域量化器(time-domain quantizer)在同一比較週期內直接判斷輸入電壓之電壓範圍。此類比數位轉換器基於Vcm-based切換方式提出具輸入電壓適應性(input-range-adaptive)的電容切換方式,此方式可以維持固定的共模準位電壓,並大幅節省類比數位轉換器(DAC)之電容切換耗能。
為驗證本電路,此架構使用90奈米1P9M互補式金氧半導體製程製作,晶片總面積為1133×1133μm2,核心電路面積為390×97μm2,在0.35至0.5伏特電源電壓及相對應的300千至2百萬赫茲取樣頻率操作下,此晶片在Nyquist頻率訊號輸入時實現之SNDR為從55.5至56.3dB,其對應的ENOB為8.92至9.06bit,功率消耗為0.3至2.5微瓦,等效的figure of merit (FoM)為1.94至2.32fJ/conversion-step。
This thesis presents an ultra-low voltage and power-efficient 10-bit successive-approximation register (SAR) analog-to-digital converter (ADC) for Internet of Things (IoT).
The proposed ADC operates at ultra-low supply voltage from 0.35V to 0.5V to save power consumption. This architecture reuses a comparator as a voltage-to-time converter and implements a time-domain quantizer. The comparator converts voltage difference of input signal sampled on DACs to MSB result and the corresponding comparison time simultaneously, and then time-domain quantizer detects the input range. An input-range-adaptive (IRA) switching method is proposed to significantly reduce the average switching power of capacitive-DAC (CDAC) and keep common-mode voltage constant.
The prototype was fabricated in 90nm 1P9M CMOS technology with a core area of 390×97μm2. At 0.35V-to-0.5V supply voltage and 300kS/s-to-2MS/s sampling rate, the ADC achieves SNDR from 55.5dB to 56.3dB corresponding ENOB from 8.92bit to 9.06bit at Nyquist-frequency input and consumes power from 0.3μW to 2.5μW, resulting in a figure of merit (FoM) from 1.94 fJ/conversion-step to 2.32fJ/conversion-step.
Bibliography
[1] W. Fan and Y. Li. (2010, May. 10). Opportunities, Challenges and Practices of the Internet of Things [Online]. Available: http://wwwen.zte.com.cn/endata/magazine/ztetechnologies/2010/no5/articles/201005/t20100510_184418.html
[2] H. Chen, B. Wei, and D. Ma, "Energy Storage and Management System With Carbon Nanotube Supercapacitor and Multidirectional Power Delivery Capability for Autonomous Wireless Sensor Nodes," IEEE Trans. Power Electronics, vol. 25, pp. 2897-2909, Sep. 2010.
[3] B. Murmann. (2015, Jul. 12). ADC Performance Survey 1997-2015 [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[4] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed.: WILEY, 2012.
[5] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed.: WILEY, 2010.
[6] M. Ahmadi and N. Won, "A 3.3fJ/conversion-step 250kS/s 10b SAR ADC using optimized vote allocation," in Prom. IEEE Custom Integrated Circuits Conf. (CICC), 2013, pp. 1-4.
[7] C.-Y. Liou and C.-C. Hsieh, "A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280-281.
[8] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, "A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196-197.
[9] Y.J. Chen and C.-C. Hsieh, "A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain quantizer in 90nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.
[10] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
[11] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," IEEE Trans. Circuits and Systems II, Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
[12] A. Rossi and G. Fucili, "Nonredundant successive approximation register for A/D converters," Electronics Lett., vol. 32, pp. 1055-1057, Jun. 1996.
[13] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, "Split capacitor DAC mismatch calibration in successive approximation ADC," in Prom. IEEE Custom Integrated Circuits Conf. (CICC), 2009, pp. 279-282.
[14] S.-S. Wong, Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, "Parasitic calibration by two-step ratio approaching technique for split capacitor array SAR ADCs," in Proc. Int. SoC Design Conference (ISOCC), 2009, pp. 333-336.
[15] Y. Zhu, U.-F. Chio, H.-G. Wei, S.-W. Sin, S.-P. U, and R. P. Martins, "Linearity analysis on a series-split capacitor array for high-speed SAR ADCs," in Proc. 51st IEEE Int. Midwest Symp. Circuits and Systems (MWSCAS), 2008, pp. 922-925.
[16] S. Lei, Q. Dai, C. Lee, and G. Qiao, "Analysis on Capacitor Mismatch and Parasitic Capacitors Effect of Improved Segmented-Capacitor Array in SAR ADC," in 3rd Int. Symp. Intelligent Information Technology Application (IITA), 2009, pp. 280-283.
[17] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, "A voltage feedback charge compensation technique for split DAC architecture in SAR ADCs," in IEEE Symp. Circuits and Systems (ISCAS), 2010, pp. 4061-4064.
[18] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, "A 10b 50MS/s 820μW SAR ADC with on-chip digital calibration," in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 384-385.
[19] W.-Y. Pang, C.-S. Wang, Y.-K. Chang, N.-K. Chou, and C.-K. Wang, "A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2009, pp. 149-152.
[20] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, "A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13µm CMOS process," in Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 236-237.
[21] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 45, pp. 1111-1121, Jun. 2010.
[22] H.-Y. Huang, J.-Y. Lin, C.-C. Hsieh, W.-H. Chang, H.-H. Tsai, and C.-F. Chiu, "A 9.2b 47fJ/conversion-step asynchronous SAR ADC with input range prediction DAC switching," in IEEE Symp. Circuits and Systems (ISCAS), 2012, pp. 2353-2356.
[23] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits, vol. 45, pp. 731-740, Apr. 2010.
[24] A. Rodríguez-Vázquez, F. Medeiro, and E. Janssens, CMOS Telecom Data Converters: Kluwer Academic Publisher, 2003.
[25] G.-Y. Huang, C.-C. Liu, Y.-Z. Lin, and S.-J. Chang, "A 10-bit 12-MS/s successive approximation ADC with 1.2-pF input capacitance," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2009, pp. 157-160.
[26] X. Zhou and Q. Li, "A 160mV 670nW 8-bit SAR ADC in 0.13μm CMOS," in Proc. IEEE Custom Integrated Circuits Conference (CICC), 2012, pp. 1-4.
[27] S.-I. Chang, K. Al-Ashmouny, and E. Yoon, "A 0.5V 20fJ/conversion-step rail-to-rail SAR ADC with programmable time-delayed control units for low-power biomedical application," in Proc. ESSCIRC, 2011, pp. 339-342.
[28] K. Ishida, K. Kanda, A. Tamtrakarn., H. Kawaguchi, and T. Sakurai, "Managing subthreshold leakage in charge-based analog circuits with low-VTH transistors by analog T- switch (AT-switch) and super cut-off CMOS (SCCMOS)," IEEE J. Solid-State Circuits, vol. 41, pp. 859-867, Apr. 2006.
[29] P. Harpe, C. Zhou, X. Wang, G. Dolmans, and H. de Groot, "A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90nm CMOS," in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 388-389.
[30] G. van der Plas, S. Decoutere, and S. Donnay, "A 0.16pJ/Conversion-Step 2.5mW 1.25GS/s 4b ADC in a 90nm Digital CMOS Process," in IEEE ISSCC Dig. Tech. Papers, 2006, p. 2310.
[31] P. J. A. Harpe, C. Zhou, Y. Bi, N. P. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, "A 26 μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios," IEEE J. Solid-State Circuits, vol. 46, pp. 1585-1595, May. 2011.
[32] H.-Y. Tai, H.-W. Chen, and H.-S. Chen, "A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, 2012, pp. 92-93.
[33] K.-H. Chiang, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, "A 10b 100kS/s SAR ADC with charge recycling switching method," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2014, pp. 329-332.