研究生: |
翁子恆 Weng, Tsu-Heng |
---|---|
論文名稱: |
以p-型四氧化三鈷奈米結構做為電洞傳輸層之固態染料敏化太陽能電池 Solid-State Dye-Sensitized Solar Cell with p-type Co3O4 as a Hole Conductor |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 固態染料敏化太陽能電池 、氧化鈷 |
外文關鍵詞: | Solid-State Dye-Sensitized Solar Cell, cobalt oxide, DSSC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由調整反應溫度、時間、濃度、和攪拌,製備以水熱法成長的獨特四氧化三鈷(Co3O4)奈米結構,並將Co3O4奈米結構做為電洞傳輸層,且利用與一般固態染料敏化太陽能電池(Solid-State Dye-Sensitized Solar Cell,SS-DSSC)中膜層堆疊順序相反之製作方式,組成穩定、封裝容易的固態染料敏化太陽能電池。
目前本研究利用85 °C、24 hr、氨水體積百分濃度25%、磁石攪拌之製程條件,已成功地合成出表面帶有細微片狀結構之黑色Co3O4 nm多晶顆粒結構,其粒徑約為100 nm,而該奈米結構之能隙,經測定得知分別約為3.15 eV和1.85 eV。另外將所製備的Co3O4奈米顆粒以刮刀成型法塗佈,完成與一般SS-DSSC中膜層堆疊順序相反之元件,目的是使二氧化鈦(TiO2)層與Co3O4電洞傳輸層間有更佳之介面、使元件在陽光下有更好穩定性、使染料敏化電池之封裝更簡易。
在此研究中,雖然所製作之固態染料敏化太陽能電池的能量轉換效率僅只有2.6□10-4 %。然而經過分析,未來若繼續往增加Co3O4和TiO2間接觸面積、膜厚最佳化、及降低Co3O4奈米結構尺寸等方向努力,相信能製作出穩定、封裝簡易、且效率高之固態染料敏化太陽能電池。
In this work, through the optimization of temperature, time, concentration, and stirring of chemical the reaction, a hydrothermal synthesis of Co3O4 with unique nanostructure is presented. Using this nanostructured Co3O4 as a hole conductor, a solid-state dye-sensitized solar cell (SS-DSSC) with an inverse stacking sequence of layers is also fabricated.
The Co3O4 nanoparticles covered with smaller flakes have been synthesized in an aqueous solution with 25% of ammonia solution in the volume ratio, which is sealed at 85 °C for 24 hr. The as-grown Co3O4 black nanoparticles exhibit a diameter of around 100 nm, and optical band gaps of 3.15 eV and 1.85 eV. Besides, a SS-DSSC utilizing these as-grown Co3O4 nanoparticles as the hole collector with an inverse stacking sequence is fabricated by paste-squeegee method in order to provide better contact between hole Co3O4 conductor and TiO2 layer, higher stability under sunlight, and easier sealing condition than liquid-type dye-sensitized solar cells (DSSCs).
Even though the fabricated DSSC devices in this work exhibit low power conversion efficiency (PCE) of 2.6□10-4 %, major root causes were identified. Further efforts in improving the contact between Co3O4 and TiO2, optimizing the thickness of film stacks, and reducing Co3O4 nanostructure size will enable the fabrication of an SS-DSSC with good stability and power conversion efficiency.
[1]. J. Goldemberg et al., Ethanol for a sustainable energy future, Science, 315, 808-810 (2007)
[2]. M. Grätzel, Review dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145-153 (2003)
[3]. H. Gerischer, H. Tributsch, Ber. Bunsen-Ges., Photocell using covalently-bound dyes on semiconductor surfaces, Phys. Chem. 72, 437–445 (1968)
[4]. H. Tributsch, H. Gerischer, Ber. Bunsen-Ges., The use of semiconductor electrodes in the study of photochemical reactions, Phys. Chem. 73, 251–260 (1969)
[5]. S. Anderson et al., Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser, Nature 280, 571–573 (1979)
[6]. M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon, and R. D. Wright, Sensitisation of semiconducting electrodes with ruthenium-based dyes, Faraday Discuss. Chem. Soc. 70, 285–298 (1980)
[7]. Antonio Luque et al., Handbook of Photovoltaic Science and Engineering, 668 (2003)
[8]. A. Luque et al., Handbook of photovoltaic science and engineering, 669-669 (2003)
[9]. http://www.easthorse.net/cm/images/spectrum.gif
[10]. B. O’Regan, M. Grätzel, A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737–740 (1991)
[11]. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115, 6382–6390 (1993)
[12]. M. K. Nazeeruddin, P. Péchy and M. Grätzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex, Chem. Commun., 1705–1706 (1997)
[13]. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc. 123, 1613–1624 (2001)
[14]. M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44, 6841-6851 (2005)
[15]. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 127, 16835–16847 (2005)
[16]. U. Bach et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature 395, 583–585 (1998)
[17]. K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole, Sol. Energy Mater. Sol. Cells 55, 113–125 (1998)
[18]. K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, and L. A. A. De Silva, Dye-sensitized photoelectrochemical cells based on porous SnO2/ZnO composite and TiO2 films with a polymer electrolyte, Chem. Mater. 11, 2474–2477 (1999)
[19]. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, P. S. R. S. Weerasundara, Sensitization of nano-porous films of TiO2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltaic cells J. Photochem. Photobiol., A: Chem. 117, 137–142 (1998)
[20]. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha and V. P. S. Perera, A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex, J. Phys. D: Appl. Phys. 31, 1492–1496 (1998)
[21]. K. Tennakone, V. P. S. Perera, I. R. M. Kottegoda, and G. R. R. A. Kumara, Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films, J. Phys. D: Appl. Phys. 32, 374–379 (1999)
[22]. B. O’Regan and D. Schwartz, Efficient dye-sensitized charge separation in a wide-band-gap p-n heterojunction, J. Appl. Phys. 80, 4749–4754 (1996)
[23]. G. Kumara et al., Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide, Sol. Energy Mat. Sol. Cells 69, 195-199 (2001)
[24]. P. M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter, and H. Tributsch, On the photo-degradation of dye sensitized solid-state TiO2/dye/CuI cells, Semicond. Sci. Technol. 18, 708-712 (2003)
[25]. J. Bandara and J. P. Yasomanee, P-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells, Semicond. Sci. Technol. 22, 20–24 (2007)
[26]. J. Bandara and H. Weerasinghe, Solid-state dye-sensitized solar cell with p-type NiO as a hole collector, Solar Energy Materials & Solar Cells, 85, 385–390 (2005)
[27]. N. A. M. Barakat et al., Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process, J. Phys. Chem. C, 112, 12225–12233 (2008)
[28]. W. L. SMXTn and A. D. HoBsoy, The structure of cobalt oxide, Co3O4, Acta. Cryst., B29, 362-363 (1973)
[29]. Z. G. Guo and W. M. Liu, Superhydrophobic spiral Co3O4 nanorod arrays, Appl. Phys. Lett. 90, 193108-1~193108-3 (2007)
[30]. H.A.E. Hagelin-Weaver et al., Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar bombardment, Applied Surface Science, 235, 420–448 (2004)
[31]. http://www.nfc.nctu.edu.tw/mechine_new/mechine/SEM4700.htm
[32]. Y. L. Huang, Carbon nanofiber interconnect catalyzed by UV-enhanced electroless Ni-P nanoparticles, 22-22 (2008)
[33]. Y. L. Huang, Carbon nanofiber interconnect catalyzed by UV-enhanced electroless Ni-P nanoparticles, 24-24 (2008)
[34]. http://ccsun.nchu.edu.tw/~imtech/equipment/Hitachi%20U-3010 %20UV.jpg
[35]. http://www.ae17.com/admin/upFile/91720071259195.jpg
[36]. http: //www.usinenouvelle.com/industry/img/model-general- purpose- sourcemeter -w-000078743-4.jpg
[37]. Y. Jiang et al., Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation, Materials Chemistry and Physics, 74, 234–237 (2002)
[38]. M. Herna´ndez-Ve´lez, Nanowires and 1D arrays fabrication: An overview, Thin Solid Films, 495, 51– 63 (2006)
[39]. Y. Xia et al., One dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15, 353-389 (2003)
[40]. A. Luque et al., Handbook of Photovoltaic Science and Engineering, 678-678 (2003)
[41]. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells, Solar Energy Materials & Solar Cells 90, 549–573 (2006)
[42]. A. Luque et al., Handbook of Photovoltaic Science and Engineering, 703-703 (2003)
[43]. F. Mark, Optical Properties of Solids, 4-4 (2004)
[44]. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 1118-1118 (1997)