簡易檢索 / 詳目顯示

研究生: 黃玄超
Huang, Xuan-Chao
論文名稱: Optimal Constructions of Optical Queues With a Limited Number of Recirculations
有繞行次數限制之光佇列的最佳建造方式
指導教授: 鄭傑
Cheng, Jay
口試委員: 鄭傑
張正尚
陳博現
張翔
馮輝文
陳煥
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 208
中文關鍵詞: 尤拉演算法先進先出多工器整數表示法線性壓縮器線性解壓縮器最大可表示整數光緩衝器光佇列封包交換
外文關鍵詞: Eculid's algorithm, FIFO multiplexers, integer representation, linear compressors, linear decompressors, maximum representable integer, optical buffers, optical queues, packet switching
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • One of the main problems in all-optical packet-switched networks is the lack of optical buffers, and one feasible technology for the constructions of optical buffers is to use optical crossbar Switches and fiber Delay Lines (SDL). In this dissertation, we consider SDL constructions of optical queues with a limited number of recirculations through the optical switches and the fiber delay lines. Such a problem arises from practical feasibility considerations. In our previous work, we have shown that the \emph{effective} maximum delay of a linear compressor/decompressor and the effective buffer size of a 2-to-1 FIFO multiplexer in our constructions are equal to
    the \emph{maximum representable integer} $B(\dbf_1^M;k)$ with respect to $\dbf_1^M$ and $k$ (see (1.4) in Chapter 1 for the definition of $B(\dbf_1^M;k)$), where $\dbf_1^M=(d_1,d_2,\ldots,d_M)$ is the sequence of the delays of the $M$ fibers used in our constructions and $k$ is the maximum number of times that a packet can be routed through the $M$ fibers. Furthermore, we have proposed a class of greedy constructions $\Gcal_{M,k}$ for linear compressors, linear decompressors, and 2-to-1 FIFO multiplexers, and have shown that every optimal construction among our previous constructions of these types of optical queues under the constraint of a limited number of recirculations must be a greedy construction. In other words, we have shown that to find an optimal construction, it suffices to find an optimal sequence ${\dbf^*}_1^M\in \Gcal_{M,k}$ such that
    $B({\dbf^*}_1^M;k)=\max_{\dbf_1^M\in \Gcal_{M,k}}B(\dbf_1^M;k)$.

    In this dissertation, we further show that there are at most two optimal constructions and give a simple algorithm to obtain the optimal construction(s). The main idea in this dissertation is to use \emph{pairwise comparison}
    to remove a sequence $\dbf_1^M\in \Gcal_{M,k}$ such that
    $B(\dbf_1^M;k)<B({\dbf'}_1^M;k)$ for some ${\dbf'}_1^M\in \Gcal_{M,k}$. To our surprise, the simple algorithm for obtaining the optimal construction(s) is related to the well-known \emph{Euclid's algorithm} for finding the greatest common divisor (gcd) of two integers. In particular, we show that if $\gcd(M,k)=1$, then there is only one optimal construction; if $\gcd(M,k)=2$, then there are two optimal constructions; and if $\gcd(M,k)\geq 3$, then there are at most two optimal constructions.


    在全光封包交換網路 (all-optical packet-switched networks) 中,建造光封包的緩衝器是一個重要的課題,而目前已知可行的方法是利用光交換機 (optical switches) 與光纖延遲線 (fiber delay lines) 來建造光封包的緩衝器。在這篇論文裡,我們考慮的問題是如何建造有繞行次數限制之光佇列 (optical queues)。這樣的一個繞行次數限制是來自實作上的考量。由先前的研究成果,我們已經知道在有繞行次數限制的情況下,光學線性壓縮器 (optical linear compressors) 與光學線性解壓縮器 (optical linear decompressors) 的最大有效延遲時間 (effective maximum delay),以及雙輸入埠與單輸出埠之先進先出光學多工器 (optical 2-to-1 FIFO multiplexers) 的有效緩衝區容量 (effective buffer size),都等於一個最大可表示整數$B(\dbf_1^M;k)$,其中$\dbf_1^M=(d_1,d_2,\ldots,d_M)$為光纖延遲線長度的數列,$k$為光封包繞行此$M$條光纖的次數限制 ($B(\dbf_1^M;k)$的數學定義請參閱論文第一章的(1.4)式)。另外,我們已經知道光學線性壓縮器、光學線性解壓縮器、以及雙輸入埠與單輸出埠之先進先出光學多工器的最佳建造方式,必定可由一個貪婪建造法 (greedy constructions) 得到,換句話說,要找到上述光佇列的最佳建造方式 ,我們只需在貪婪建造法所構成的集合$\Gcal_{M,k}$裡找出一個${\dbf^*}_1^M$使得$B({\dbf^*}_1^M;k)=\max_{\dbf_1^M\in\Gcal_{M,k}}B(\dbf_1^M;k)$即可。

    在這篇論文裡,我們證明上述光佇列最多存在兩種最佳建造方式,並且我們提出一個簡單的演算法以得到這些最佳建造方式。我們主要的做法是透過配對比較 (pairwise comparison) 來移除$\Gcal_{M,k}$中比較不好的建造方式。出人意料地,我們的演算法與輾轉相除法 (Euclid's algorithm) 有關。我們證明了如果$\gcd(M,k)=1$,那麼只存在一個最佳建造方式;如果$\gcd(M,k)=2$,那麼我們有兩種最佳建造方式;如果$\gcd(M,k)=3$,那麼最多只存在兩種最佳建造方式。

    中文摘要i 致謝辭iii Abstract v Contents vii List of Figures ix List of Tables xvii 1 Introduction 1 2 The Optimal Constructions 9 3 Proof of The Main Result 23 4 Conclusion 57 Appendix A Proof of Lemma 18 with h = 1 59 Appendix B Proof of Comparison rule A in Lemma 21 with h = 1 67 Appendix C Proof of Lemma 26 for an even integer 2 ≤ h ≤ N by using Comparison rule A in Lemma 21 for the odd integer h − 1 74 Appendix D Proof of Comparison rule B in Lemma 29 for an even integer 2 ≤ h ≤ N by using Comparison rule A in Lemma 21 for the odd integer h − 1 89 Appendix E Proof of Lemma 18 for an odd integer 3 ≤ h ≤ N by using Comparison rule B in Lemma 29 for the even integer h − 1 105 Appendix F Proof of Comparison rule A in Lemma 21 for an odd integer 3 ≤ h ≤ N by using Comparison rule B in Lemma 29 for the even integer h − 1 119 Appendix G Proof of Lemma 23 135 Appendix H Proof of Lemma 25 163 Appendix I Proof of Lemma 31 166 Appendix J Proof of Lemma 33 192 Appendix K MATLAB program of Algorithm 10 195 Bibliography 203

    [1] P. R. Prucnal, M. A. Santoro, and S. K. Sehgal, “Ultrafast all-optical synchronous multiple access fiber networks” IEEE Journal on Selected Areas in Communications,
    vol. 4, pp. 1484–1493, December 1986.
    [2] M. J. Karol, “Shared-memory optical packet (ATM) switch,” in Proceedings SPIE: Multigigabit Fiber Communication Systems (1993), vol. 2024, pp. 212–222, Octo-
    ber 1993.
    [3] Z. Hass, “The “staggering switch”: An electronically controlled optical packet switch,”IEEE Journal of Lightwave Technology, vol. 11, pp. 925–936, May/June 1993.
    [4] I. Chlamtac and A. Fumagalli, “Quadro-star: A high performance optical WDM star network,” IEEE Transactions on Communications, vol. 42, pp. 2582–2591, August 1994.
    [5] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson, P. Poggiolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong, R. T. Hofmeister, C.-L. Lu, A.
    Mekkittikul, D. J. M. Sabido IX, C.-J. Suh, and E. W. M. Wong, “Cord: contention resolution by delay lines,” IEEE Journal on Selected Areas in Communications, vol. 14,
    pp. 1014–1029, June 1996.
    [6] R. L. Cruz and J.-T. Tsai, “COD: alternative architectures for high speed packet switching,” IEEE/ACM Transactions on Networking, vol. 4, pp. 11–21, February 1996.
    [7] D. K. Hunter, D. Cotter, R. B. Ahmad, D. Cornwell, T. H. Gilfedder, P. J. Legg, and I. Andonovic, “2 × 2 buffered switch fabrics for traffic routing, merging and shaping inphotonic cell networks,” IEEE Journal of Lightwave Technology, vol. 15, pp. 86–101,
    January 1997.
    [8] D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic, “SLOB:a switch with large optical buffers for packet switching,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1725–1736, October 1998.
    [9] E. Varvarigos, “The “packing” and the “scheduling packet” switch architectures for almost all-optical lossless networks,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1757–1767, October 1998.
    [10] I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Multibuffer delay line architectures for efficient contention resolution in optical switching nodes,” IEEE Transactions on Communications, vol. 48, pp. 2089–2098, December 2000.
    [11] Y.-T. Chen, C.-S. Chang, J. Cheng, and D.-S. Lee, “Feedforward SDL constructions of output-buffered multiplexers and switches with variable length bursts,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07), Anchorage, AK, USA, May 6–12, 2007.
    [12] I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Optimal 2 × 1 multi-stage optical packet multiplexer,” in Proceedings IEEE Global Telecommunications Conference (GLOBECOM’97), Phoenix, AZ, USA, November 3–8, 1997, pp. 566–570.
    [13] C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary and sufficient condition for the construction of 2-to-1 optical FIFO multiplexers by a single crossbar switch and fiber delay lines,” IEEE Transactions on Information Theory, vol. 52, pp. 4519–4531, October 2006.
    [14] J. Cheng, “Constructions of fault tolerant optical 2-to-1 FIFO multiplexers,” IEEE Transactions on Information Theory, vol. 53, pp. 4092–4105, November 2007.
    [15] J. Cheng, “Constructions of optical 2-to-1 FIFO multiplexers with a limited number of recirculations,” IEEE Transactions on Information Theory, vol. 54, pp. 4040–4052, September 2008.
    [16] X. Wang, X. Jiang, and S. Horiguchi, “Improved bounds on the feedfoward design of optical multiplexers,” in Proceedings International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN’08), Sydney, Australia, May 7–9, 2008, pp. 178–183.
    [17] S.-Y. R. Li and X. J. Tan, “Fiber memory,” in Proceedings Annual Allerton Conference on Communication, Control, and Computing (Allerton’06), Monticello, IL, USA,
    September 27–29, 2006. Full version of this paper is submitted to IEEE Transactions on Information Theory.
    [18] C.-S. Chang, Y.-T. Chen, and D.-S. Lee,“Constructions of optical FIFO queues,” IEEE Transactions on Information Theory, vol. 52, pp. 2838–2843, June 2006.
    [19] B. A. Small, A. Shacham, and K. Bergman, “A modular, scalable, extensible, and transparent optical packet buffer,” Journal of Lightwave Technology, vol. 25, pp. 978–985, April 2007.
    [20] P.-K. Huang, C.-S. Chang, J. Cheng, and D.-S. Lee, “Recursive constructions of parallel FIFO and LIFO queues with switched delay lines,” IEEE Transactions on Information Theory, vol. 53, pp. 1778–1798, May 2007.
    [21] N. Beheshti and Y. Ganjali, “Packet scheduling in optical FIFO buffers,” in Proceedings IEEE High-Speed Networks Workshop (HSN’07), Anchorage, AK, USA, May 11, 2007.
    [22] X.Wang, X. Jiang, and S. Horiguchi, “A construction of shared optical buffer queue with switched delay lines,” in Proceedings IEEE International Conference on High Perfor-
    mance Switching and Routing (HPSR’08), Shanghai, China, May 15–17, 2008, pp. 86–91.
    [23] A. D. Sarwate and V. Anantharam, “Exact emulation of a priority queue with a switch and delay lines,” Queueing Systems: Theory and Applications, vol. 53, pp. 115–125,
    July 2006.
    [24] H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee, “A simple proof for the constructions of optical priority queues,” Queueing Systems: Theory and Applications, vol. 56, pp. 73–77, June 2007
    [25] H. Kogan and I. Keslassy, “Optimal-complexity optical router,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07 Minisymposium), Anchorage, AK, USA, May 6–12, 2007.
    [26] H. Rastegarfar, M. Ghobadi, and Y. Ganjali,“Emulation of Optical PIFO Buffers,”in Proceedings IEEE Global Communications Conference (GLOBECOM’09), Honolulu, HI, USA, November 30–December 4, 2009.
    [27] F. Jordan, D. Lee, K. Y. Lee, and S. V. Ramanan, “Serial array time slot interchangers and optical implementations,” IEEE Transactions on Computers, vol. 43, pp. 1309–1318, 1994.
    [28] Y.-T. Chen, J. Cheng, and D.-S. Lee, “Constructions of linear compressors, non-overtaking delay lines, and flexible delay lines for optical packet switching,”IEEE/ACM
    Transactions on Networking, vol. 17, pp. 2014–2027, December 2009. Conference version appeared in IEEE INFOCOM 2006.
    [29] C.-S. Chang, J. Cheng, T.-H. Chao, and D.-S. Lee, “Optimal constructions of fault tolerant optical linear compressors and linear decompressors,” IEEE Transactions on
    Communications, vol. 57, pp. 1140–1150, April 2009. Conference version appeared in IEEE INFOCOM 2007.
    [30] H. Kogan and I. Keslassy, “Fundamental complexity of optical systems,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07 Minisymposium), Anchorage, AK, USA, May 6–12, 2007.
    [31] J. Liu, T. T. Lee, X. Jiang, and S. Horiguchi, “Blocking and delay analysis of single wavelength optical buffer with general packet size distribution,” IEEE Journal of Lightwave Technology, vol. 27, pp. 955–966, April 2009.
    [32] D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet switches,”IEEE Journal of Lightwave Technology, vol. 16, pp. 2081–2094, December 1998.
    [33] S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Communications Magazine, vol. 38, pp. 84–94, February 2000.
    [34] D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet switching,”IEEE Communications Magazine, vol. 38, pp. 116–122, September 2000.
    [35] S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A unified study of contention-resolution schemes in optical packet-switched networks,” Journal of Lightwave Technol-
    ogy, vol. 21, pp. 672–683, March 2003.
    [36] S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” Journal of Lightwave Technology, vol. 24, pp. 4468–4492, December 2006.
    [37] K. Mikl´os, “Congestion resolution and buffering in packet switched all-optical networks,” Ph.D. Dissertation, Budapest University of Techonology and Economics, Budapest, Hungary, 2008.
    [38] E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photonics Technology Letters, vol. 18, pp. 103–105, January 2006.
    [39] C. P. Larsen and M. Gustavsson, “Linear crosstalk in 4 × 4 semiconductor optical amplifier gate switch matrix,” IEEE Journal of Lightwave Technology, vol. 15, pp. 1865–1870, October 1997.
    [40] R. Geldenhuys, Z. Wang, N. Chi, I. Tafur Monroy, A. M. J. Koonen, H. J. S. Dorren, F. W. Leuschner, G. D. Khoe, and S. Yu, “Multiple recirculations through Crosspoint
    switch fabric for recirculating optical buffering,” Electronics Letters, vol. 41, pp. 1136–1137, September 2005.
    [41] J. Cheng, C.-S. Chang, S.-H. Yang, T.-H. Chao, D.-S. Lee, and C.-M. Lien, “Constructions of optical queues with a limited number of recirculations–Part I: Greedy
    constructions,” submitted for publication.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE