簡易檢索 / 詳目顯示

研究生: 劉育助
Liu,Yo-Zthu
論文名稱: 橫向高電壓4H-SiC金氧半場效電晶體設計與製作
The Design and Fabrication of Lateral High Voltage 4H-SiC MOSFETs
指導教授: 黃智方
Huang,Chih-Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 61
中文關鍵詞: 橫向高電壓元件碳化矽金氧半場效電晶體
外文關鍵詞: Lateral High Voltage, 4H-SiC MOSFETs
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    近年來由於在汽車、航空、國防等眾多工業上,皆可見到功率積體電路的應用,使功率積體電路(Power Integrated Circuits)在發展上受到越來越多的關注。寬能隙材料常被運用於高功率元件,由於碳化矽(Silicon Carbide)材料在製程上與傳統矽材料相同,在部分製程技術上可使用矽的製程設備,所以在發展上更加受到重視。本篇論文中將著重在橫向高電壓金氧半場效電晶體元件製作於碳化矽材料中的研究及發展上。
    本篇論文製作橫向高電壓金氧半場效電晶體,由於RESURF金氧半電晶體量測崩潰時常因閘極場平板崩潰而元件崩潰,為了改善此問題元件設計上採用two-zone RESURF結構,製作上有別於傳統摻雜方式以蝕刻產生two-zone區域,並加入場平板結構且將元件製作於semi-insulating基板以提升崩潰電壓。本論文中設計不同漂移區長度、通道長度、場平板長度及two zone蝕刻位置。由量測結果得知高溫摻雜活化之step bunching現象影響元件導通電阻極大。崩潰上則元件漂移區長度影響最大。在元件最大漂移區長度100μm、通道長度5μm設計下,元件崩潰電壓達4400伏特。元件因通道電子遷移率太差導致導通電阻為19.2Ω-cm2。表面缺陷補陷過大使導通電阻隨溫度上升而減少。


    Abstract

    In this thesis, we demonstrate a novel high voltage lateral 4H-SiC MOSFET on a semi-insulating substrate with a two-zone RESURF structure to reduce the electric field near the gate oxide. Different from the traditional implanted two zone RESURF structure, we fabricate the two-zone structure by dry etching. Field plates are also employed at the gate and the drain to enhance the blocking voltage. Semi-insulating substrates are used to avoid substrate assisted depletion effect. The length of the drift region, channel, and the etching location of the two zone are designed in this thesis. Experiment results show that step bunching due to the high temperature activation has a significant influence on the on-resistance. The breakdown voltage increases with the drift region and the best achieved blocking voltage is 4400 V, which is the highest value ever reported on SiC lateral MOSFET to the author’s knowledge. Ron is only 19.2Ω-cm2, limited by the poor channel mobility. Ron decreases with temperature in all devices, indicating a large number of interface traps existing.

    目錄 摘要------------------------------------------------------I 致謝----------------------------------------------------III 目錄---------------------------------------------------- X 圖目錄-------------------------------------------------XIII 表目錄-------------------------------------------------XVII 第一章 序論---------------------------------------------1 1.1 前言----------------------------------------------1 1.2 碳化矽材料簡介------------------------------------2 1.3 文獻回顧與研究動機--------------------------------4 第二章 元件設計與光罩製作------------------------------12 2.1 元件結構設計與介紹------------------------------12 2.1.1 Two-zone RESURF結構--------------------------13 2.1.2 場平板(field plate)結構----------------------14 2.1.3 SOI結構--------------------------------------14 2.2 實驗設計與光罩製作------------------------------15 2.2.1 實驗設計-------------------------------------15 2.2.2 光罩製作-------------------------------------18 第三章 製程實驗----------------------------------------22 3.1 晶片確定濃度與正反面------------------------- ---22 3.2 元件製程實驗------------------------------------ 23 3.2.1 R1製程探討----------------------------------23 3.2.2 R2元件製程---------------------------------- 28 第四章 量測結果與分析----------------------------------40 4.1 元件基本電性分析-------------------------------- 40 4.2 元件導通電阻------------------------------------ 44 4.2.1 測試元件量測-----------------------------------44 4.2.2 不同drift region對Ron的影響------------------46 4.2.3 不同通道長度對Ron的影響--------------------- 47 4.2.4 水平垂直設計對Ron的影響--------------------- 48 4.3 元件溫度效應-------------------------------------50 4.4 元件崩潰-----------------------------------------52 4.4.1 最佳崩潰元件找尋 57 4.4.2 漂移區長度對崩潰電壓影響---------------------57 第五章 結論與未來展望----------------------------------58 參考文獻-----------------------------------------------59

    參考文獻

    [1] A. R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002.
    [2] H. S. Lee, ”High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
    [3] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum Semiconductors for High-Power Electronics,” IEEE Trans. Electron Device, vol. 36, pp. 1811, 1989.
    [4] T. Fujihira, ”Theory of Semiconductor Super Junction Devices.” Jpn. J. Appl. Phys., vol. 36, pp. 6254-6262, 1997.
    [5] G. Deboy, M. Marz, J.P. Stengl, H. Strack, J. Tihanyi, and H. Weber,
    “A new generation of high voltage MOSFETs breaks the limit line of
    silicon,” IEDM Tech. Dig., pp. 683–685, 1998.
    [6] S. G. Nassif-Khalil and C.A.T. Salama, “Super junction LDMOST in
    silicon-on-sapphire technology (SJ-LDMOST),” in Proc. Int. Symp.
    Power Semiconductor Devices and ICs (ISPSD), pp.81–84, 2002.
    [7] P. M. Shenoy, A. Bhalla, and G.M. Dolny, “Analysis of the effect of
    charge imbalance on the static and dynamic characteristics of the
    super junction MOSFET,” in Proc. Int. Symp. Power Semiconductor
    Devices and ICs (ISPSD), pp. 99–102, 1999.
    [8] S. G. Nassif-Khalil and C.A.T. Salama, “Super-junction LDMOST on a silicon-on-sapphire substrate,” IEEE Trans. Electron Devices, vol.50, no.5, pp. 1385–1391, 2003.
    [9] J. A. Appels and H. M. J. Vas, “HIGH VOLTAGE THIN LAYER
    DEVICES (RESURF DEVICES),” IEDM Tech. Dig., pp. 238, 1979.
    [10] K. Agarwal, N. S. Saks, S. S. Mani,V. S. Hegde, and P. A.Sanger,
    “Investigation of lateral RESURF, 6H-SiC MOSFETs,” Mater. Sci. Forum,vol. 338–342, pp. 1307–1310, 2000.
    [11] S. Banerjee, K. Chatty, T. P. Chow, and R. J. Gutmann, “Improved
    High voltage lateral RESURF MOSFETs in 4H-SiC,” IEEE Electron Device Lett., vol. 22, pp. 209–211, May 2001.
    [12] S. Banerjee, T. P. Chow, and R. J. Gutmann, ”Robust, 1000 V, 130 mΩcm2, Lateral, Tow-Zone RESURF MOSFET’s in 6H–SiC,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 69-72, 2002.

    [13] S. Banerjee , T. P. Chow, and R. J. Gutmann, ”1300-V 6H-SiC Lateral MOSFETs with Two RESURF Zones,” IEEE Electron Device Lett., vol. 23, pp. 624-626, 2002.
    [14] T. Kimoto, H. Kawano and J. Suda, “1200V-Class 4H-SiC RESURF MOSFETs with Low On-Resistances,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2005.
    [15] T. Kimoto, H. Kawano, and J. Suda, “1330V, 67 mΩ-cm24H-SiC (0001) RESURF MOSFET,” IEEE Electron Device Lett, vol. 29, pp. 649-651, 2005.
    [16] M. Noborio, Y. Negoro, J. Suda and T. Kimoto, ”Reduction of On-Resistance in 4H-SiC Multi-RESURF MOSFETs,” Materials Science Forum, vol. 527-529, pp. 1307, 2006.
    [17] M. Noborio, Y. Negoro, J. Suda and T. Kimoto, ” 4H–SiC Lateral
    Double RESURF MOSFETs With Low ON Resistance,” IEEE
    Electron Device Let, vol. 54, no.5,May 2007.
    [18] C. F. Huang, Jin-Rong Kuo, and Chih-Chung Tsai, ” High Voltage (3130 V) 4H-SiC Lateral p-n Diodes on a Semiinsulating Substrate,” IEEE Electron Device Lett, vol. 29, no.1,January 2008.
    [19] D. A. Neamen, Semiconductor Physics & Dervices, Third Edition.
    [20] B. J. Baliga, Power Semiconductor Device, Copyright 1996 by PWS Publishing Company.
    [21] M. Lazar, H. Vang, P. Brosselard, C. Raynaud, P. Cremillieu, J.-L. Leclercq, A.Descamps, S. Scharnholz, D. Planson ” Deep SIC etching with RIE,” Superlattices and Microstructures, vol. 40, 2006, pp. 388-392.
    [22] Kin Kiong LEE, Takeshi OHSHIMA, Akihiko OHI, Hisayoshi ITOH and Gerhard PENSL, ” Anomalous Increase in Effective Channel Mobility on Gamma-Irradiated p-Channel SIC Metal-Oxide Semiconductor Field-Effect Transistors Containing Step Bunching ,” J. Appl. Phys, vol. 45,No. 9A, 2006, pp. 6830-6836.
    [23] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami,” Electronic behaviors of high-does phosphorus-ion implanted 4H-SIC(0001) ,” J. Appl. Phys, vol. 96,No. 1, JULY 2004.
    [24] Y. Song, S. Dhar, L. C. Feldman, ” Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys, vol. 95, No. 9, May 2004.
    [25] Ho-Young Cha, C. I. Thomas, G. Koley, Lester F. Eastman and Michael G. Spencer, “ Reduced Trapping Effects and Improved Electrical Performance in buried-gate 4H-SiC MESFETs,” IEEE Trans. Electron Dev., vol. 50, No.7, JULY 2003.
    [26] A.-B. Chen and P. Srichaikul, " Shallow Donor Levels and the Conduction Band Edge Structures in Polytypes of SiC," Phys. stat. sol. (b), vol. 202, no. 1, pp. 81-106, 1997.
    [27] Integrated Systems Engineering, Zurich, Switzerland, DESSIS, ISE TCAD Release 7.5 User's Manual, 2001.
    [28] C. Y. Lu, J. A. Cooper, Jr., T. Tsuji, G. Chung; J. R.Williams, K. McDonald, L. C. Feldman, “ Effect of Process Variations and Ambient Temperature on Electron Mobility at The SiO2/4H-SiC Interface,” IEEE Trans. Electron Dev., Vol. 50, Issue 7, pp. 1582-1588, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE