研究生: |
蔡明霖 Julius M. Tsai |
---|---|
論文名稱: |
利用<111>晶片製造之新型光訊衰減器 Fabrication and Design of variable optical attenuator utilizing <111> wafer |
指導教授: |
方維倫
Weileun Fang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 169 |
中文關鍵詞: | 光訊衰減器 、加速規 、電容感測 、雜訊 |
外文關鍵詞: | Optical Attenuator, Accelerometer, Capacitive Sensing, Noise |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從電報、電話問世之後,人類第一次能夠以幾近於光的速度互相溝通。更有甚者,當光纖問世之後,大量的取代了傳統的電纜成為主要的遠距傳輸主幹,更進一步的將傳輸往量的方面延伸。然而光纖真正所能承載的傳輸量,相較於真正的使用量卻有一段相當大的差距。儘管光纖在使用做傳輸用途上具備有極大的頻寬、低損耗、價格低廉、輕量化、積集化、抗腐蝕、對雜訊以及電磁場干擾的免疫力以及保密性等優點,卻仍不能完全取代現有的電線電纜等傳輸線路,因真正的全光網路中,必須有能對光訊號直接做調變動作的元件以達事半功倍之效,而這一類的元件又多半以機械式的為主流。但傳統機械式的元件因體積龐大、反應速度慢且無法積集化,因此近年來有許多研究致力於以微機電(MEMS)的元件加以取代。由於微機電元件具有積集化、反應速度快的潛力,有逐漸取代傳統元件的趨勢。本研究將針對其中一種必需的元件—可調變光訊衰減器進行探討。
本研究在實行上參考各種可調變光訊衰減器的文獻,選擇具有反應快、功率低、動態範圍大以及低偏極化損失等優點的遮板效應。並以此調變原理實際設計一新型的可調變光訊衰減器,模擬其機械以及光學的特性,包括電壓與位移的關係、遮擋板與位移的關係以及光纖位置對插入損失的影響。同時善用單晶矽優異的機械特性配合前人開發的BELST製程,加以變化以適應製造此一元件,並於文中詳述變化後製程的特色與製程設計的重點。本文透過(1)機械系統以及(2)光學與機械系統耦合的量測實驗驗證本元件的性能。機械系統的量測共有三個主要項目,包括施加電壓對位移的關係、槓桿在施加靜電力之後的變形、動態響應以及疲勞測試。關於光學與機械系統耦合的量測重點為插入損失、反射損失以及動態範圍。
Ever since the invention of telegram and telephone, human beings for the first time have the ability to communicate with each other with the speed of light. Even further, the invention of fiber keeps pushing the communication from not just speed but also to quantity and quality. Although the fiber has advantages such as large bandwidth, low loss, low cost, lightweight, high integrity, anti-corrosion, information security and immunity to EM disturbance, the real capacity of fiber has never been reached due to the lack of efficient devices to manipulate light. In real optical network the mechanical components have been used on switching or attenuating light signals for a long time. But those traditional mechanical components are heavy and response slowly compared to the demands of modern desires. Therefore it is imperative to develop efficient devices for that purpose, and MEMS seems to point out a way. In this research, a novel variable optical attenuator has been proposed for further studies.
In this article, we have done literature surveys for all kinds of methodologies to attenuate light signals. And we concluded shutter-based MEMS VOA has the benefits of high speed, low power, large dynamic range and low polarization loss. By using shutter-based method, a novel VOA has been proposed with detailed mechanical and optical characteristic simulations including mechanical/optical static response and insertion loss of fiber positions and shutter positions. The device is fabricated with the BELST II process and detailed description of the process is recorded. Finally the novel VOA is characterized with mechanical static measurement, mechanical dynamic measurement, fatigue test, insertion loss, optical dynamic range and back reflection loss.
[1] D.J. Bishop, C.R. Giles, and G.P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today,” IEEE Communications Magazine, Vol. 40, I. 3, March 2002, pp. 75-79.
[2] S.D. Robinson, “MEMS technology-micromachines enabling the ’all optical network’,” Electronic Components and Technology Conference, 2001, Orlando FL., Proceedings 51st, pp. 423-428
[3] L.Y. Lin and E.L. Goldstein, “MEMS for free-space optical switching,” LEOS '99, San Fransico, CA, Vol. 2, pp. 483-484.
[4] S.S. Lee, L.S. Huang, C.J. Kim, and M.C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” J. Lightwave Technology, Vol. 17, I. 1, pp. 7-13.
[5] R.A. Miller, Y.C. Tai, G. Xu, J. Bartha, and F. Lin, “An electromagnetic MEMS 2×2 fiber optic bypass switch,” Transducers'97, Chicago, IL, Vol. 1, pp. 8–92.
[6] J. Leuthold, R. Ryf, S. Chandrasekhar, D.T. Neilson, C.H. Joyner, and C.R. Giles, “All-optical nonblocking terabit/s crossconnect based on low power all-optical wavelength converter and MEMS switch fabric,” OFC’01, Anaheim, CA, Vol. 4, pp. PD16-1 - PD16-3.
[7] X.M. Zhang, and A.Q. Liu, “A MEMS pitch-tunable grating add/drop multiplexers,” Optical MEMS’00, Kauai, HI, pp. 25-26.
[8] J. Seo, S. Oh, L.P. Lee, “Single layer 2D optical scanners with integrated polymer microlenses,” Optical MEMS’02, Lugano, Switzerland, pp. 151-152.
[9] K. Saruta, H. Fujita, and H. Toshiyoshi, “Bulk micromachined 2D lens scanners for transparent optical fiber switches,” Optical MEMS’02, Lugano, Switzerland, pp. 13-14.
[10] W. Piyawattanametha, H. Toshiyoshi, J. LaCosse, and M.C. Wu, “Surface-micromachined confocal scanning optical microscope,” CLEO’00, San Francisco, CA, pp.447-448.
[11] H.Y. Lin, and W. Fang, “Torsional mirror with an electrostatically driven lever-mechanism,” Optical MEMS’00, Kauai, HI, pp. 113-114.
[12] N.C. Tien, O. Solgaard, M.H. Kiang, M. Daneman, K.Y. Lau, and R.S. Muller, “Surface-micromachined Mirrors For Laser-beam Positioning,” Transducers '95, Stockholm, Sweden, Vol. 2, pp. 352-355.
[13] T.E. Stern, and K. Bala, Multiwavelength Optical Networks, Addison Wesley Longman, 1999.
[14] G.. Keiser, “Optical Fiber Communication,” 3nd ed., Boston, McGraw-Hill, 2000.
[15] 趙涵捷, ”光纖之旅,” 初版,台北市,台灣書局, 1990.
[16] J.E. Ford, J.A. Walker, D.S. Greywall, and K.W. Goossen, “Micromechanical fiber-optic attenuator with 3ms response,” J. Lightwave Technology, vol. 16, I.9, pp.1663 –1670, 1998.
[17] C.R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” J. Selected Topics in Quantum Electronics, vol. 5, I. 1,pp.18 –25, 1999.
[18] V.A. Aksyuk, C.R. Giles, A. Dentai, E.C. Burrus, C.A. Burrus, L. Stulz, and D.Bishop, “Optically-powered optical power limiter for use in lightwave networks,” MEMS'99, San Diego, CA, pp.344 –348.
[19] W. Noell, P.A. Clerc, L. Dellmann, B. Guldimann, H.P. Herzig, O. Manzardo, C.R. Marxer, K.J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” J. Selected Topics in Quantum Electronics, vol. 8, I. 1,pp.148 –154, 2002.
[20] C. Marxer, P. Griss, and N.F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” Photonics Technology Letters, vol, 11, I. 2, pp.233-235, 1999.
[21] H. Toshiyoshi, K. Isamoto, A. Morosawa, M. Tei, and H. Fujita, “A 5-volt operated MEMS variable optical attenuator,” Transducers’03, Vol. 2, Boston MA, pp. 1768–1771.
[22] C.H. Ji, Y. Yee J. Choi, and J.U. Bu, “Electromagnetic variable optical attenuator,” Optical MEMS’02, Lugano, Switzerland, pp. 49–50.
[23] S. Kim and S. Nam, ”Novel MEMS variable optical attenuator with expanded core waveguides,” Optical MEMS’02, Lugano, Switzerland, pp. 65-66.
[24] R.R.A. Syms, H. Zou, J. Stagg, and D.F. Moore, “Multistate latching MEMS variable optical attenuator,” Photonics Technology Letters, Vol. 16, I. 1, pp.191-193, 2004.
[25] B. Barber, C.R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” Photonics Technology Letters, Vol. 10, I. 9, pp. 1262-1264, 1998.
[26] X.M. Zhang, A.Q. Liu, C. Lu, and D.Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electronics Letters, Vol. 38, I. 8, pp.382-383, 2002.
[27] R. Wood, V. Dhuler, and E. Hill, “A MEMS variable optical attenuator,” Optical MEMS’00, Kauai, HI, pp. 121-122.
[28] C.H. Kim, N. Park, and Y.K. Kim, “MEMS reflective type variable optical attenuator using off-axis misalignment,” Optical MEMS’02, Lugano, Switzerland, pp. 55-56.
[29] W. Sun, J. Mughal, F. Perez, W. Noell, N.A. Riza, and N.F. de Rooij, “A bulk micromachined tiltable mirror array digital variable optical attenuator,” Transducer’03, Boston, MA, Vol. 2, pp. 1772-1775.
[30] Sun, W. Munghal, M.J. Noell, W. Perez, F. Riza, and N.A. de Rooij, “Fabrication and some measurement of a digital variable optical attenuator,” Optical MEMS’03, Waikoloa, HI, pp. 115-116.
[31] Y.Y. Kim, S.S. Yun, C.S. Park, J.H. Lee, Y.G. Lee, H.K.i Lee, S.K.i Yoon, and J.S. Kang, “Refractive variable optical attenuator fabricated by silicon deep reactive ion etching,” Photonics Technology Letters, Vol. 16, I. 2, pp. 485- 487, 2004.
[32] M.J. Mughal and N.A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” Photonics Technology Letters, vol, 14 I. 4, pp. 510 –512, 2002.
[33] M.J. Mughal and N.A. Riza, “65 dB dynamic range 2.8 microseconds switching speed variable fiber-optic attenuator,” ECOC '01, Amsterdam, the Netherlands, pp. 56 –57.
[34] Q. Li, X. Liu, J. Peng, B. Zhou, and H.P. Lee, “Demonstration of a fast all-fiber acousto-optic tunable filter based variable optical attenuator,” LEOS’01, San Diego, CA, vol. 2, pp.845-846.
[35] A.A. Au, Q. Li, C.H. Lin, and H.P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” Photonics Technology Letters, Vol. 16, I. 1, pp. 150-152, 2004.
[36] Q. Li, A.A. Au, C.H. Lin, E.R. Lyons, and H.P. Lee, “An efficient all-fiber variable optical attenuator via acoustooptic mode coupling,” Photonics Technology Letters, Vol. 14, I. 11, pp. 1563-1565, 2002.
[37] F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” J. Selected Topics in Quantum Electronics, Vol. 5, I. 1, pp. 52-59, 1999.
[38] F. Chollet, M. de Labachelerie, and H. Fujita, “Electromechanically actuated evanescent optical switch and polarization independent attenuator,” MEMS’98, Heidelberg, Germany, pp.476-481.
[39] T. Hashimoto, and M.S. Yataki, “Variable Optical Fiber Attenuators,“ CLEO/Pacific Rim'99, Seoul, Korea, vol. 4, pp.1151-1152.
[40] T.C. Kowalczyk, I. Finkelshtein, M. Kouchnir, Y.C. Lee, A.-D.Nguyen, D. Vroom, and W.K. Bischel, “Variable optical attenuator with large dynamic range and low drive power,” OFC’01, vol. 3, Anaheim, CA, pp.WR5-1-4.
[41] V. Morozov, H. Fan, L. Eldada, L. Yang, and Y. Shi, “Fused fiber optic variable attenuator,” OFC’00, vol. 4, Baltimore, MD, pp.22-24.
[42] S.S. Lee, Y.S. Jin, and Y.S. Son,” Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers,” J. Lightwave Technology, vol. 17, I. 12, pp. 2556 –2561, 1999.
[43] S.S. Lee, Y.S. Jin, and Y.S. Son, “Polymeric tunable optical attenuator for power regulator in WDM system,” CLEO/Pacific Rim'99, vol. 2, Seoul, Korea, pp.264-265.
[44] T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC type compact variable optical attenuator for photonic transport network,” Electronics Letters, Vol. 34, I. 3, pp. 264–265, 1998.
[45] Y.O. Noh, M.S. Yang, Y.H. Won, and W.Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electronics Letters, Vol. 36, I. 24, pp. 2032–2033, 2000.
[46] S.S. Lee, J.U. Bu, S.Y. Lee, K.C. Song, C.G. Park, and T.S. Kim, “Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide,” Photonics Technology Letters, Vol. 12, I. 4, pp. 407-409, 2000.
[47] N.S. Lagali, J.F.P. van Nune, D. Pant, L. Eldada, “Ultra-low power and high dynamic range variable optical attenuator array,” ECOC '01, Vol. 3, Armsterdam Netherland, pp. 430–431
[48] M. Svalgaard, K. Faerch, and L.U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Lightwave Technology, Vol. 21, I. 9, pp. 2097–2103 Sept. 2003
[49] T.C. Kowalczyk, I. Finkelshtein, M. Kouchnir, Y.C. Lee, A.D. Nguyen, D. Vroom, and W.K. Bischel, “Polymeric variable optical attenuator array,” CLEO '01, Baltimore MD, pp.17-18.
[50] S.M. Garner and S. Caracci, “Variable optical attenuator for large-scale integration,” Photonics Technology Letters, Vol. 14, I. 11, pp. 1560-1562, 2002.
[51] K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” Photonics Technology Letters, vol. 13, I. 5, pp. 487 -489, 2001.
[52] M.A. Cowin, R. Varrazza, C. Morgan, R.V. Penty, I.H. White, A.M. McDonagh, S. Bayly, J. Riley, M.D. Ward, and J.A. McCleverty, “Low Power Electrochromic Variable Optical Attenuator with 50 dB attenuation range,“ OFC’01, vol. 3, Anaheim, CA, pp. WR6-1-3.
[53] N.A. O'Brien, J.G.H. Mathew, and B.P. Hichwa, “An electrochromic variable optical attenuator (ECVOA),” OFC/IOOC'99, Anaheim, CA, pp. PD26/1 -PD26/3.
[54] B.E.A. Saleh, and M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, 1991.
[55] A. Benner, H.M. Presby, and N. Amitay, “Low-reflectivity in-line variable attenuator utilizing optical fiber tapers,” J. Lightwave Technology, vol. 8, I. 1, pp. 7 –10, 1990.
[56] M. Takahashi, “Variable light attenuator of improved air-gap type with extremely low returning light,” IMTC’94, vol.2, Hamamatsu Japan, pp. 947 – 950.
[57] R.J. Roark, “Formulas for Stress and Strain”, 4th ed., MacGraw-Hill, 1965.
[58] J. Hsieh, C.C. Chu, J.M. Tsai, and W. Fang, “Using Extended BELST Process in Fabricating Vertical Comb Actuator for Optical Applications,” Optical MEMS, Lugano Switzerland, August 2002, Paper WP 39.
[59] J. Hsieh and W. Fang, " A Boron Etch-stop Assisted Lateral Silicon Etching Process for Improved High-Aspect-Ratio Silicon Micromachining and Its Applications," J. Micromechanics and Microengineering, vol.12, pp.574-581, 2002.
[60] 謝哲偉, “BELST高深寬比微加工製程平台及其應用”, 博士論文, 國立清華大學, 2002.
[61] E. Oosterbroek, J.W. Berenschot, H.V. Jansen, A.J. Nijdam, G. Pandraud, A. van den Berg, and M.C. Elwenspoek, “Etching Methodologies in <111>-oriented silicon wafers,” J. MMEMS, vol.9, pp.390-398, 2000.
[62] B.C.S. Chou, C.-N. Chen, and J.-S. Shie, “Micromaching on (111)-oriented silicon,” Sensors and Actuator A, vol. 75, pp. 271-277, 1999.
[63] J.G. Fleming, “Combining the best of bulk and surface micromichining using Si {111} substrate,” in Proc. of SPIE, vol. 3511, Santa Clara, CA, Sep.1998, pp.162-168.
[64] H.H. Hu, H.Y. Lin, B.C.S. Chou, and W. Fang, "Characteristics of the Micromachined Beams on the (111) Substrate," Sensors and Actuators A, vol. 93, pp. 258-265, 2001.
[65] S. C. Lee, S. Park, and D. Cho, “Honeycomb-Shaped Deep-Trench Oxide Posts Combined with the SBM Technology for Micromachining Single-Crystal Silicon without using SOI,” Transducers'01, Munich, Germany, June 2001, pp.1124-1127.
[66] S. Lee, B.-L Lee, K. D. Jung, J. H. Choi, T.-R. Chung, and Y. C. Cho, “Extension of Surface/Buck Micromachining: One-Mask Fabrication Technology Enabling the Integration of 6-DOF Inertial Sensors on A Single Wafer,” Transducers'01, Munich, Germany, June 2001, pp.1136-1139.
[67] M. Madou, Fundamentals of Microfabrication, CRC press, New York, 1997.
[68] J. Kim, D. Cho, and R.S. Muller, “Why is (111) Si a better mechanical material for MEMS?” Transducers’01, Munich, Germany, June 2001, vol.1, pp.662-665.
[69] Y. Gianchandani and K. Najafi, "A Bulk Silicon Dissolved Wafer Process for Microelectromechanical Devices," J. MEMS, vol.1, pp.77-85, 1992.
[70] C. G. Keller and R. T. Howe, “HexSil Tweezers for Teleoperated Micro-Assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77.
[71] F. Ayazi and K. Najafi, “High Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology,” J. MEMS, vol. 9, pp. 288-294.
[72] K.A. Shaw, Z.L. Chang, and N.C. MacDonald, “SCREAM I: A Single Mask, Single-Crystal Silicon, Reactive Ion Etching Process for MicroElectroMechanical Structures”, Sensors and Actuators A, vol.40, pp.210-213, 1994.
[73] T. D. Kudrle, H. P. Neves, D. C. Rodger, and N.C. MacDonald, “A Microactuated Millimeter Wave Phase Shifter,” Transducers'99, Sendai, Japan, June 1999,
[74] X.Y. Li, P.J. French, P.M. Sarro, and R.F. Wolffenbuttel, “Fabrication of a Single Crystalline Silicon Capacitive Lateral Accelerometer Using Micromachining Based on Single Step Plasma Etching,” MEMS’95, Amsterdam, the Netherlands, Feb. 1995, pp. 398-403.
[75] W.H. Juan and S.W. Pang, “Released Si Microstructures Fabricated by Deep Etching and Shallow Diffusion,” J. MEMS, vol. 5, pp 18-23, 1996.
[76] M. E. McNie, D. O. King, and M. C. L. Ward, “Micromachining in SOI,” Recent Advances in Micromachining Techniques (Digest No: 1997/081), IEE Colloquium, 20,
[77] J.T. Nee, “Hybrid Surface-/Bulk-Micromachining Processes for Scanning Micro-Optical Components”, Ph.D dissertation, U.C. Burkeley, 2001.
[78] S. Lee, S.Park, and D. Cho, “The Surface/Bulk Micromachining (SBM) process: A New Method for Fabricating Released MEMS in Single Crystal Silicon,” J. MEMS, vol.8, pp.409-416, 1999.
[79] E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, and G. T.A. Kovacs, “Silicon Fusion Bonding and Deep Reactive Ion Etching a New Technology for Microstructures,” Tansducers’95, Stockholm, Sweden, June 1995, pp.556-559.
[80] S. -H. Kim, S.-H. Lee and Y.-K. Kim, “A High-Aspect-Ratio Comb Actuator Using UV-LIGA Surface Micromachining and (110) Silicon Bulk Micromachining,” J. Micromechanics and Microengineering, vol. 12, pp. 128-135, 2002.
[81] Selvakumar, K. Najafi, W. H. Juan, and S. Pang, “Vertical comb array microactuators,” MEMS’95, San Diego, CA, Jan. 1995, pp.43-48.
[82] J.A. Yeh, H. Jiang, and N.C. Tien, “Integrated Polysilicon and DRIE Bulk Silicon Micromachining for an Electrostatic Torsional Actuator,” J. MEMS, vol.8, pp.456–465, 1999.
[83] H.M. Jeong, J.J. Choi, K.Y. Kim, K.B. Lee, J.U. Jeon, and Y.E. Pak, “Milli-scale Mirror Actuator with Buck Micromachined Vertical Combs,” Transducers'99, Sendai, Japan, June 1999, pp.1006-1009.
[84] R.A. Conant, J.T. Nee, K.Y. Lau, and R.S. Muller, “A Flat High-Frequency Scanning Micromirror,” Solid-State Sensors and Actuators Workshop 2000, Hilton head, SC, June 2000, pp. 6-9.
[85] J. Kim, S. Park, and D. Cho, “A Novel Electrostatic Vertical Actuator Fabricated in one Homogeneous Silicon Wafer Using Extended SBM Technology,” Transducers’01, Munich, Germany, June 2001, vol.1, pp.756-759.
[86] H. Schenk, P. Durr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kuck, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, pp 715-722, 2000.
[87] J.M. Tsai, H.Y. Chu, J. Hsieh and W. Fang, “The BELST II process for a silicon high-aspect-ratio micromaching verticalcomb actuator and its applications,” J. Micromechanics and Microengineering, Vol. 14, pp.235-241, 2004.
[88] H. Seidel, “The mechanism anisotropic, electrochemical silicon etching in alkaline solution,” Solid-State Sensor and Actuator Workshop, pp. 86-91, 1990.
[89] A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, “TMAH/IPA Abisotropic Etching Characteristics,” Sensors and Actuators A, Vol. 37-38, pp.737-743, 1993.
[90] I. Zubel and M. Kramkowska, “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions” Sensors and Actuators A, Vol. 93, pp.138-147, 2001.
[91] Y. Lu, J. Ma, J. Zou, and X. Wang, “Research of Anisotropic etching in KOH water solution with Isopropyl Alcohol,” International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002, Chengdu, China, Vol. 2, pp. 1779-1783.
[92] S.M. Sze, Semiconductor Devices, John Willey & Sons, New York, 1985.
[93] G..T.A. Kovac, Micromachined Transducers Source Book, McGrow Hill, New York, 2000.
[94] S.D. Senturia, Microsystem Design, Kluwer Academic Publisher, Boston, 2001.
[95] Analog Device ADXL05 accelerometer datasheet.
[96] G. K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M. S.C. Lu, and L.R. Carley, “Laminated High-Aspect-Ratio Microstructures in a Conventional CMOS Process,” Sensors & Actuators A, vol. 57, no. 2, pp. 103-110, 1996.
[97] http://www.memscap.com/memsrus/svcsrules.html.
[98] M. Lu, Xu Zhu, and Gary K. Fedder, “Mechanical Property Measurement Of 0.5-mm CMOS Microstructures,” MRS’98, San Francisco, CA, pp. 27-32
[99] B. Razavi, “Design of Analog CMOS Integrated Circuit”, McGrow Hill, New York 2000.
[100] P. Klein, “An Analytical Thermal Noise Model of Deep Submicron MOSFET’s”, IEEE Electron Device Letter, Vol.20, N0.8, 1999.
[101] G..K. Fedder, “Simulation of Microelectromechanical System”, Ph. D. Thesis, U.C. Berkeley, 1994.
[102] J.B. Starr, “Squeeze-film damping in solid-state accelerometers”, Technical Diegest in IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 1990, pp 44-47.
[103] W. Ye, X. Wang H. Werner, D. Freeman, and J. White, “Air Damping in Laterally Oscillating Microresonators: A Numerical and Experimental Study”, J. MEMS, Vol.12, I.5, Oct. 2003, pp. 557-566.
[104] H. Luo, ”Integrated Multiple Device CMOS-MEMS IMU Systems and RF MEMS Applications”, Ph. D. Thesis, ECE CMU 2002.