簡易檢索 / 詳目顯示

研究生: 邱重銘
論文名稱: 微型固態氧化物燃料電池堆冷啟動動態模擬
Cold Start-up Dynamic Simulation of a Micro SOFC Stack
指導教授: 洪哲文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 52
中文關鍵詞: 固態氧化物燃料電池堆
外文關鍵詞: SOFC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的在研究如何縮短高溫燃料電池之啟動時間,利用Matlab/Simulink建立固態氧化物燃料電池的方塊模型,並以HTceremix公司所推出的燃料電池為實驗平台,設定其規格為模擬系統之參數,進行整體性能的分析與預測。

    模擬系統整合方面,將進入燃料電池堆前的燃料氫氣與氧化劑空氣經過烤箱加熱,而燃料電池堆組也被放置烤箱內以預設的溫升速度加熱,模擬整體系統在350℃/hr的溫升速度下,最快可以達到操作溫度—973度K的啟動時間。然後再利用其他的加熱方式來縮短啟動時間,例如將溫升的速度加倍以及利用車輛所排放出來的高溫廢氣進行預熱的步驟,以預測可能達成的時間。另外並模擬在不同負載電流的情況下,該顆燃料電池所能達到的輸出功率和操作電壓的數值。最後利用進出電池堆的能量變化及熱阻係數去推導出一個估測電池溫度的方程式,以求得該燃料電池堆其各室單電池各個不同的溫度變化情形。

    經過Matlab/Simulink的模擬結果可以得知,這組燃料電池堆即使在烤箱操作在最快的溫升速度時,仍然需要8930秒的時間才能達成操作溫度,考慮到目前的結果仍然不盡理想,因此在未來仍朝其他加熱方式或是縮小固態氧化物燃料電池的規格去加快溫升的速度,以達到快速啟動的目的。


    摘要 I 致謝 II 目錄 □ 表目錄 V 圖目錄 VI 燃料電池方程式符號列表 VIII 第一章 緒論 1 1.1前言 1 1.2研究目的與方法 2 1.3文獻回顧 3 1.3.1固態氧化物燃料電池部份 3 1.3.2輔助動力系統部份 4 第二章 固態氧化物燃料電池理論模式 6 2.1 熱流傳遞系統 6 2.2 固態氧化物燃料電池系統 10 2.2.1固態氧化物燃料電池電壓及過電壓 10 2.2.2固態氧化物燃料電池組及其熱模式 13 2.3 熱流元件 14 2.3.1 熱交換器 14 2.3.3 節流閥 16 第三章 模擬結果 18 3.1 固態氧化物燃料電池電壓模擬 18 3.1.1燃料電池模擬系統介紹 18 3.1.2 燃料電池輸出電壓部份 18 3.1.3 輸出電壓在施加負載的變化 19 3.1.4 輸出功率與效率 21 3.2 燃料電池啟動模擬 22 3.2.1 啟動時間部份 22 3.2.2 利用高溫廢氣加溫電池堆 24 3.3電池堆單室溫度模組 25 3.3.1電池堆內部溫度估測方程式 26 3.3.2電池堆溫度模擬情形 27 第四章 結論與未來工作 30 4.1 結論 30 4.2 未來建議工作 31 參考文獻 32

    [1]Costamagna, P.,“The benefit of Solid Oxide Fuel Cells with integrated air pre-heater”Journal of Power Sources, Vol.69, pp1-9, 1997.
    [2]Chan, S.H., Ho, H.K., Tian, Y., “Modeling of Simple Hybrid solid Oxide Fuel Cell and Gas Turbine Power Plant” ,Journal of Power Sources, vol.109, pp111-120, 2002.
    [3]Von Spakovsky, M.R., Mazumder ,S.K., Haynes ,C., “Investigation of System and Component Performance and Interaction Issues for Solid-Oxide Fuel Cell Based on Auxiliary Power Unit Responding to Changes in Application Load”,IECON 2003, Vol.23,pp1574-1579,2003.
    [4]宋朝凱,“固態氧化物燃料電池混成發電系統動態模擬與設計”,清華大學動力機械工程研究所論文,2004
    [5]Jurado, F., Otega, M.,“Fuzzy Hammerstein Model Based Predictive Control of a Solid Oxide Fuel Cell”,Emerging Technologies and Factory Automation, 2005,Vol.2,2005.
    [6]Xu, M., Wang, C., Qiu, Y.,“Control and Simulation for Hybrid Solid Oxide Fuel Cell Power Systems”,Applied Power Electronics Conference and Exposition, 2006.
    [7]Sharma, R., Gao, H.,“Low Cost High Efficiency DC-DC Converter for Fuel Cell Powered Auxiliary Power Unit of a Heavy Vehicle”, IEEE Transactions on Power Electronics, Vol.21, pp587-591,2006.
    [8]Zizelman, J.,Shaffer, S.,Mukerjee, S.,“Solid Oxide Fuel Cell Auxiliary Power Unit- a development update”, SAE,2002-01-0411, 2002
    [9]Petruzzi, L., Cocchi, S., Fineschi, F.,“A Global Thermo-electrochemical Model for SOFC Systems Design and Engineering”,Journal of Power Sources, Vol.118, pp96-107, 2003.
    [10]Botti, J., Grieve, M., MacBain, A.,“Electric Vehicle Range Extension Using an SOFC Apu”,SAE,2005-01-1172, 2005
    [11]Burke, A.A., Carreiro, L.G.,“System Modeling of an air-independent Solid Oxide Fuel Cell System for Unmanned Undersea Vehicle”, Journal of Power Sources, Vol.158, pp428-435, 2006.
    [12]Marquez, H.J., “Nonlinear Control Systems – Analysis and Design”, John Wiley & Sons, Inc. , 2003
    [13]Black, W.L., Hartley, J.G., “Thermodynamics”,HarperCollins Publishers. , 1991
    [14]Watson, N., Janota, M.S., “Turbocharging the Internal Combustion Engine”, The Macmillan Press LTD, 1982
    [15]Boltze, M., Lawence, J., “Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel” , Journal of Power Sources, Vol.154, pp479-488, 2006
    [16]Murshed, AKM. M., Huang B., Nandakumar K., “Control relevant modeling of planer solid oxide fuel cell system”, Journal of Power Sources, Vol.163, pp830-845, 2007.
    [17]Padulles J., Ault G.W. , McDonald J.R., “An integrated SOFC plant dynamic model for power systems simulation”, Journal of Power Sources, Vol.86, pp495-500, 2000.
    [18]Lu N., Li Q., Sun X., Khaleel M. A., “The modeling of a standalone solid-oxide fuel cell auxiliary power unit”,Journal of Power Sources, Vol.161, pp938-948, 2006.
    [19]Yin J., Jensen M. K., “Analytic model for transient heat exchanger response ”, International Journal of Heat and Mass Transfer, Vol.46, pp3255-3264, 2003.
    [20] EG&G Technical Services and Science Applications International Corporation, Fuel Cell Handbook, sixth ed., US Department of Energy, 2002.
    [21] Zuo Y., Wu W. F., Zhang X. X., Lin L., Xiang S. H., Liu T. S., Niu L. Y., Huang X. L., “A Study of Heat Transfer in High-Performance Hydrogen Bell-Type Annealing Furnaces” ,Heat Transfer—Asian Research, 30 (8), 2001
    [22]Lu Y., Schaefer L., “Numerical study of a flat-tube high power density solid oxide fuel cell Part II: Cell performance and stack optimization” , Journal of Power Sources, Vol.153, pp68-75, 2006
    [23]A.F. Mills, “Heat Transfer” , second edition, Prentice Hall, Inc.,1999
    [24]J. Larminie ,A. Dicks, “Fuel Cell Systems Explained”, John Wiley & Sons, LTD, 2001

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE