簡易檢索 / 詳目顯示

研究生: 黃子軒
Huang Tzu Hsuan
論文名稱: 砷化鎵系列異質光電元件之研製
A Study of GaAs based Optoelectronic Heterostructure Devices
指導教授: 吳孟奇
Wu, Meng Chyi
口試委員: 張守進
Chang, Shoou Jinn
謝光前
Hsieh, Kuang Chien
許渭州
Hsu, Wei Chou
蘇炎坤
Su, Yan Kuin
劉文超
Liu, Wen Chau
羅文雄
Lour, Wen Shiung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 102
中文關鍵詞: 砷化鎵異質接面發光電晶體位置測定元件三層接面太陽能電池
外文關鍵詞: GaAs, HBLET, PSD, Triple-junction Solar Cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要研究以砷化鎵為基底的光電元件,可以分成三個部分,第一是製作異質接面發光電晶體 (HBLET),第二是製作位置測定感測器 (PSD),第三是製作三層接面太陽能電池 (Multijunction solar cell),並探討其元件的特性和提出不同的分析方法所得到的結果。首先,針對異質接面發光電晶體的部分,我們已經成功完成兩種鈍化的製程,透過穩定的製程用在一般異質接面電晶體 (HBT)上,而得到在VBE = 1.35 V可以得到電流增益接近62,但是同樣的製程用在異質接面發光電晶體上,其電流增益都小於1,因為在射極注入電子當在通過基極時大部分的電子都會被電洞復合,進而產生光和熱的形式散失,使得電流增益都小於1,而我們也得到異質接面發光電晶體的光特性上有良好的表現,其在基極電流110mA下,可以得到光功率1.09 mW。對於異質接面發光電晶體不僅可以獲得光訊號也可以透過基極去調變光的強度,但是光電訊號是互相影響,所以如果要獲得較佳的電特性可以透過改變元件尺寸,也會有明顯的改善其元件特性。
    第二個部分是探討三端點的位置測定感測器(3T-PSD),主要希望可以得到元件的模型進而跟HBT積體化,從實驗的結果來看目前已經得到元件,在不同的光源下量測水平電壓差是和垂直電壓差是十分接近,也符合理論,在紅光波長638nm照射下其靈敏度大約為14.3 mV/mm,其結果十分線性計算其非線性度範圍0.3 ~ 1.3%。再透過實驗設計得到整體模型,一方面也可以經由量測得到不同方向電流和電流大小。而更明確的將元件整體的模型描繪出來,一部分我們也去分析其元件在不同的光源下量測其反應時間,目前得到的反應時間平均大約都在60 μs到 134 μs之間。
    第三個部分是多層接面太陽能電池,我們針對多層接面太陽能電池做詳細的探討,我們都知道要完全吸收太陽光需要更寬的吸收頻譜,在半導體裡那就需要不同能隙的半導體,透過串聯的方式得到更好的轉換效率,但是我們通常注意到疊加多層材料可以增加開路電壓,而忽略掉短路電流。我們透過兩種方法,一種是透過製程的方式,透過量測分析得到各層光電流,但是利用製程的方法有一個最大困難點就是如果是中間那層吸收層的光電流最小時,你就沒辦法完整得知各層光電流的情況,所以第二方法就是為了解決這個困難而提出的方法,這個方法並不用透過製程的方式,只需要幾種波長的光源,透過調變不同強度的光源,可以推測其各層的光電流情況,能夠更有效率得到其多層接面太陽能電池的優劣。


    In this dissertation, we focus on the GaAs-based optical devices. It can be mainly divided into three parts. First of all, we have successfully fabricated and investigated the device performance in the heterojunction bipolar light-emitting transistor (HBLET). Second, we report the GaAs p-i-n structure, which is layer-compatible to the base-collector junction of a conventional InGaP-GaAs heterojunction bipolar transistor (HBT), is utilized in the fabrication of a PSD. Third, the multijunction solar cell consisting of III-V materials of InGaP/InGaAs/Ge has been investigated.
    At first, the common-emitter characteristics of the conventional HBT and HBLET are demonstrated. The peak value of common-emitter current gain β of the InGaP/GaAs HBT is close to 62 at 300K. On the other hand, the current gain of HBLET is in the range of 0.45-0.70, which is much smaller than that of HBT in the range of 30-65. For HBLET, the decrease of current gain is a trade-off to enhance light output power. The light output power increases linearly and achieves 0.58 mW at 50 mA and 1.09 mW at 110 mA. Due to the current applied to the base can modulate the light output power for HBLET; the current gain of HBLET is smaller than the conventional HBT.
    Second part, the GaAs-based p-i-n position sensitive detector are fabricated by conventional processes including photolithography, vacuum evaporation, and wet etching technique and investigated the device characteristic. It is possible that integrating a PSD with an HBT amplifier to design PSD circuits. In particular, sensitivity and linearity are two of most important sensing properties. Static sensing properties of the three-terminal PSD operated in lateral photovoltaic mode are performed using a light intensity of 3 mW and red light spot (the wavelength of 638 nm) to show a sensitivity of 14.3 mV/mm. Nonlinearities obtained from the present PSD are as small as 0.31.3% for 638 nm light sources. According to the model of photodiodes, the assumption that the total photocurrent produce two different directions photocurrent to catch in the PSD and interdiction of the 638 nm red light with an incident power of 2 mW. They are static characteristics of the fabricated PSD operated in lateral photovoltaic mode and transvere photovoltaic mode as well as response times.
    At last, the multijunction solar cells are formed by serially connecting multiple p-n junctions according to their energy-band gaps. Therefore the overall open-circuit voltage of the multijunction solar cell is equal to sum of individual open-circuit voltage associated with each subcell. However, the overall short-circuit current is limited by that of the subcell whose short-circuit is minimal. Our measurement system sets up for the nondestructive inspection of subcell’s short current. Destructive (using etching processes) and nondestructive inspection (using optical measurement) of subcell’s short circuit current were also discussed

    Contents Abstract (Chinese) I Abstract (English) III Contents V Figure Captions VII Table Captions XI Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Dissertation Organization 3 Chapter 2 Analysis of Heterojunction Bipolar Light-Emitting Transistor Embedded InGaAs/GaAs Quantum Wells 3 2.1 Introduction 5 2.2 InGaP/GaAs HBLET Fabrication 7 2.2.1 Device Structure 7 2.2.2 Device Fabrication Process with SiO2 Passivation 7 2.2.3 Device Fabrication Process with Ledge Passivation 8 2.3 Characterization Analysis Instruments 9 2.4 The Principles of Heterojunction Bipolar Light-Emitting Transistor 10 2.5 Results and Discussions 13 2.6 Summary 17 Chapter 3 Static and Dynamic Properties of a GaAs-base p-i-n Position-sensitive Detector (PSD) 29 3.1 Introduction 29 3.2 PSD Device Structure and Fabrication 31 3.3 Theoretical Analysis of Position-sensitive Detector 33 3.4 Experimental Results and Discussion 36 3.4.1 Static Characteristics of Lateral Photovoltaic Mode 36 3.4.2 Static Characteristics of Transverse Photovoltaic Mode 41 3.4.3 Dynamic Characteristics of Lateral Photovoltaic Mode: Response Time 42 3.4.4 Dynamic Characteristics of Transverse Photovoltaic Mode: Response Time 44 3.5 Summary 46 Chapter 4 The Study of Current Matching for InGaP/InGaAs/Ge Triple Junction Solar Cell 56 4.1 Introduction 56 4.2 InGaP/InGaAs/Ge Multijunction Solar Cell Fabrication 60 4.3 Results and Discussions 62 4.3.1 Open-circuit Voltage, VOC 63 4.3.2 Destructive Inspection of JSC 67 4.3.3 Nondestructive Inspection of JSC 69 4.3.4 Conversion Efficiency, η 73 4.5 Summary 76 Chapter 5 Conclusions and Prospect 88 5.1 Conclusions 88 5.2 Prospect 90 References 91 Publications List 100

    [1] J. Henry and J. Livingstone, “Wavelength response of thin-film optical position-sensitive detectors,” J. Opt. A: Pure Appl. Opt. vol. 4, pp. 527-534, 2002.
    [2] J. Henry and J. Livingstone, “A comparison of Schottky position-sensitive detectors as a function of light wavelength,” IEEE Sens. J. vol. 3, pp. 519-524, 2003.
    [3] J. Henry and J. Livingstone, “Optimizing the resonse of Schottky barrier position sensitive detectors,” J. Phys. D: Appl. Phys. vol. 37, pp. 3180-3184, 2004.
    [4] N. H. Karam, R. R. King, B. T. Cavicchi, D. D. Krut, J. H. Ermer, M. Haddad, L. Cai, D. E. Joslin, M. Takahashi, J. W. Eldredge, W. T. Nishikawa, D. R. Lillington, B. M. Keyes, and R. K. Ahrenkiel, “Development and characterization of high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells,” IEEE Trans. Electron Devices vol. 46, pp. 2116-2125, 1999.
    [5] M. Feng, N. Holonyak, Jr., B. Chu-Kung, G. Walter, and R. Chan, “Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett., vol. 84, pp. 4792-4794, 2004.
    [6] C. H. Chen, M. Hargis, J. M. Woodall, and M. R. Mello, “GHz bandwidth GaAs light-emitting diodes,” Appl. Phys. Lett., vol. 74, pp. 3140-3142, 1999.
    [7] J. Bardeen, and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Phys. Rev. vol. 74, pp. 230-231, 1948.
    [8] W. Shockley, “Circuit element utilizing semiconductive material,” U. S. Patent, US2569347, 1951
    [9] H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” IEEE Proc., vol. 70, pp. 13-25, 1982.
    [10] W. P. Dumke, J. M. Wooddall, and V. L. Rideout, “GaAs/GaAlAs heterojunction transistor for high frequency operation,” Solid-State Electron., vol. 15, pp. 1339-1343, 1972.
    [11] M. J. Mondry and H. Kroemer, “Heterostructure bipolar transistor transistor using a (Ga, In)P emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. EDL-6, pp. 175-177, 1985.
    [12] N. Holonyak, Jr., “Is the light emitting diode (LED) an ultimate lamp?,” Am. J. Phys., vol. 68, pp. 864-868, 2000.
    [13] M. G. Craford, N. Holonyak, Jr., and F. A. Kish, “In pursuit of the ultimate lamp,” Sci. Am., vol. 284, pp. 62-67, 2001.
    [14] R. J. Keyes and T. M. Quist, “Recombination radiation emitted by gallium arsenide,” Proc. IRE, vol. 50, pp. 1822-1823, 1962.
    [15] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett., vol. 84, pp. 1952-1954, 2004.
    [16] M. Feng, H. W. Then, N. Holonyak, Jr., G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett., vol. 95, pp. 033509-1-033509-3, 2009.
    [17] H. J. Chang, T. H. Huang, C. L. Tsai, C. L. Ho, and M. C. Wu, “High-speed and high-light output power of InGaAs/GaAs HBLETs with an InMoOX contact,” IEEE Photon. Technol. Lett., vol. 26, pp. 1649-1652, 2014.
    [18] G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett., vol. 94, pp. 231125-1-231125-3, 2009.
    [19] G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., “4.3 GHz optical bandwidth light emitting transistor,” Appl. Phys. Lett., vol. 94, pp. 241101-1-241101-3, 2009.
    [20] H. W. Then, M. Feng, N. Holonyak, Jr., and C. H. Wu, “Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping”, Appl. Phys. Lett., vol. 91, pp. 033505-1-033505-3, 2009.
    [21] S. Kurtz, E. Churchwell, and D. O. S. Wood, “Ultracompact H II regions. II: new high-resolution radio images,” ApJS, vol. 91, pp. 659-712, 1994.
    [22] K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Devices, vol. 24, pp. 1001-1005, 1977.
    [23] S. F. Chen, H. L. Syu, C. C. Huang, Y. L. Lee, C. L. Ho, and M. C. Wu, “High-frequency modulation of GaAs/AlGaAs LEDs using Ga-doped ZnO current spreading layers,” IEEE Electron Device Lett., vol. 35, pp. 36-38, 2014.
    [24] J. T. Wallmark, “A new semiconductor photocell using lateral photo effect,” Proc. IRE., vol. 45, pp. 474-483, 1957.
    [25] R. Martins, L. Raniero, L. Pereira, D. Costa, H. Aguas, S. Pereira, L. Silva, A. Goncalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Phil. Mag., vol. 89, pp. 2699-2721, 2009.
    [26] R. Martins, and E. Fortunato, “Lateral photoeffect in large area one‐dimensional thin‐film position‐sensitive detectors based in a‐Si:H P‐I‐N devices,” Rev. Sci. Instrum., vol. 66, pp. 2927-2934, 1995.
    [27] A. Cabrita, J. Figueiredo, L. Pereira, H. Aguas, V. Silva, D. Brida, I. Ferreira, E. Fortunato, and R. Martins, “Thin film position sensitive detectors based on pin amorphous silicon carbide structures,” Appl. Surf. Sci., vol. 184, pp. 443-447, 2001.
    [28] E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A, vol. 51, pp. 135-142, 1996.
    [29] E. Fortunato, and R. Martins, “Role of the collecting resistive layer on the static characteristics of a 1D a-Si:H thin film position sensitive detector,” Rev. Sci. Instrum., vol. 67, pp. 2702-2707, 1996.
    [30] J. Henry, and J. Livingstone, “A comparison of layered metal-semiconductor optical position sensitive detectors,” IEEE Sens. J., vol. 2, pp. 372-376, 2002.
    [31] R. H. Willens, B. F. Levine, C. G. Bethea, and D. Brasen, “High resolution photovoltaic position sensing with Ti/Si superlattices,” Appl. Phys. Lett., vol. 49, pp.1647-1648, 1986.
    [32] N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett., vol. 55, pp. 792-794, 1989.
    [33] R. Martins, and E. Fortunato, “Role of the resistive layer on the performances of 2D a-Si:H thin film position sensitive detectors,” Thin Solid Films, vol. 337, pp. 158-162, 1999.
    [34] L. Pereira, D. Brida, E. Fortunato, I. Ferreira, H. Aguas, V. Silva, M. F. M Costa, V. Teixeira, and R. Martins, “A-Si:H interface optimization for thin film position sensitive detectors produced on polymeric substrates,” J. Non-Cryst. Solids, vol. 299-302, pp. 1289-1294, 2002.
    [35] J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater., vol. 13, pp. 1023-1026, 2001.
    [36] J. Contreras, C. Baptista, I. Ferreira, D. Costa, S. Pereira, H. Aguas, E. Fortunato, R. Martins, R. Wierzbicki, and H. Heerlein, “Amorphous silicon position sensitive detectors applied to micropositioning,” J. Non-Cryst. Solids, vol. 352, pp. 1792-1796, 2006.
    [37] E. Fortunato, L. Pereira, H. Aguas, I. Ferreira, and R. Martins, “Flexible a-Si:H position-sensitive detectors,” Proc. IEEE, vol. 93, pp. 1281-1286, 2005.
    [38] S. Liu, X. Xie, and H. Wang, “Lateral photovoltaic effect and electron transport observed in Cr nano-film,” Opt. Express, vol. 22, pp. 11627-11632, 2014.
    [39] H. Águas, L. Pereira, D. Costa, E. Fortunato, and R. Martins, “Linearity and sensitivity of MIS position sensitive detectors,” J. Mater. Sci., vol. 40, pp. 1377-1381, 2005.
    [40] S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal-semiconductor junctions of CoxMnyO films and Si,” J. Phys. D: Appl. Phys., vol. 40, pp. 5580-5583, 2007.
    [41] N. Nedev, S. S. Georgiev, D. Sueva, N. Smirnov, and A. Toneva, “Carrier transport in a position sensitive detector based on an ITO/a-Si:H/Pd structure,” Sens. Actuators A, vol. 93, pp. 48-51, 2001.
    [42] L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express, vol. 18, pp. 9113-9118, 2010.
    [43] C. Q. Yu, H. Wang, and Y. X. Xia, “Enhance lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett., vol. 95, pp. 263506-1263506-3, 2009.
    [44] J. Xing, K. J. Jin, M. He, H. B. Lu, G. Z. Liu, and G. Z. Yang, “Ultrafast and high-sensitivity photovoltaic effects in TiN/Si Schottky junction,” J. Phys. D: Appl. Phys., vol. 41, pp. 195103-1-195103-3, 2008.
    [45] K. J. Jin, K. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett., vol. 91, pp. 081906-1-081906-3, 2007.
    [46] W. Hoagland, “Solar energy,” Sci. Amer, vol. 273, pp. 170-173, 1995.
    [47] G. R. Davis, “Energy for planet earth,” Sci. Amer, vol. 263, pp. 21-27, 1990.
    [48] K. N. Amulya, and J. Goldemberg, “Energy for developing world,” Sci. Amer, vol. 263, pp. 63-71, 1990.
    [49] S. K. Dey, W. A. Anderson A. E. Delahoy, and C. Cartier, “Spectral-response and diffusion-length studies of amorphous, polycrystalline, ribbon, expitaxial, and single-crystal silicon MIS solar cell,” J. Appl. Phys., vol. 50, pp. 4425-4430, 1979.
    [50] P. H. Fang, C. C. Schubert, J. H. Kinnier, and D. Pang, “Submicron Polycrystal silicon film solar cells,” Appl. Phys. Lett., vol.39, pp. 256-258, 1981.
    [51] N. Matsuki, Y. Abiko, K. Miazaki, M. Kobayash. H. Fujioka, and H. koinuma, “Concept and performance of a field-effect amorphoussilicon solar cell,” Semicond. Sci. Techno. vol. 19, pp. 61-64, 2004.
    [52] A. Rothwarf and A. M. Brnett, “Design analysis of the thin-film CdS-Cu2S solar cell,” IEEE Trans. Electron Devices, vol. 24, pp. 381-387, 1977.
    [53] C. M. Ruiz, O. Vigil, E. Saucedo, G. Contreras-Puente, and V. Bermudez, “Bi doped CdTe: increasing potentialities of CdTe based solar cells,” J. Phys.: Condens., vol. 18, pp. 7163-7169, 2006.
    [54] G. S. Kamath, J. Ewan, and R. C. Knechtli, “Large-area high-efficiency (AlGa)As-GaAs solar cells,” IEEE Trans. Electron Devices, vol. ED-24 pp. 473-475, 1977.
    [55] R. C. Knechtli, R. Y. Loo, and G. S. Kamath, “High-efficiency GaAs solae cells,” IEEE Trans. Electron Devices, vol. ED-31, pp.577-588, 1984.
    [56] G. Augustine, A. Rohatgi, and N. M. Jokerst, “Base doping optimization For radiation-hard Si, GaAs, and InP solar cells,” IEEE Trans. Electron Devices, vol. 39, pp. 2395-2400, 1992.
    [57] C. A. D. Valle and M. F. Alcaraz, “Performance of antireflecting coating-AlGaAs window layer coupling for terrestrial concentrator GaAs solar cells,” IEEE Trans. Electron Devices, vol. 44, pp. 1499-1506, 1997.
    [58] S. M. Ramey and R. Khoie, “Modeling of multiple-quantum-well solar cells including capture, escape, and recombination of photoexcited carriers in quantum wells,” IEEE Trans. Electron Devices, vol. 50, pp. 1179-1188, 2003.
    [59] B. C. Chung, G. F. Virshup, and J. G. Werthen, “High-efficiency one-sun (22.3% at air mass 0; 23.9% at air mass 1.5) monolithic two-junction cascade solar cell grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 52, pp. 1889-1891, 1988.
    [60] J. C. Zolper and A. M. Barnett, “The effect of dislocations on the open-circuit voltage of Gallium Asenide solar cells,” IEEE Trans. Electron Devices, vol. 37, pp. 478-484, 1990.
    [61] M. M. Sanfacon and S. P. Tobin, “Analysis of AlGaAs/GaAs solar cell structures by optical reflectance spectroscopy,” IEEE Trans. Electron Devices, vol. 37, pp. 450-454, 1990.
    [62] S. P. Tobin, S. M. Vernon, C. Bajgar, V. E. Haven, L. M. Geoffroy, and D. R. Lillington, “High-efficiency GaAs/Ge monolithic tandem solar cell,” IEEE Electron Device Lett., vol. 9, pp. 256-258, 1988.
    [63] S. J. Wojtczuk, S. P. Tobin, C. J. Keavney, C. Bajgar, J. D. Scofield, D. S. Ruby, “GaAs/Ge tandem-cell space concentrator development,” IEEE Trans. Electron Devices, vol. 37, pp. 455-463, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE