研究生: |
黃耀德 Yau-De Huang |
---|---|
論文名稱: |
廣義史都華平台五軸改良型工具機性能分析與設計程序 Analysis and a Design Procedure of a Generalized Stewart Platform Motion-Base for Machine Tools |
指導教授: |
彭明輝
Ming-Hwei Perng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
中文關鍵詞: | 史都華平台 、平行機構 、性能分析 、設計程序 、五軸工具機 |
外文關鍵詞: | Stewart platform, parallel mechanism, mechanical performance, Design Procedure, 5-axis machine tool |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於史都華平台(Stewart platform)的性能分析方法不夠完備,尚難以提供完整的構型分析與設計於實際應用上,並且對於奇異點的位置無法確定。本研究以廣義不共平面史都華平台為主要研究對象,研發出一套有系統的平行機構性能分析工具與設計程序,以幫助設計者得到符合設計需求的構型。
本研究從普魯克座標矩陣奇異值在平行機構上所代表的意義,逐步推究出機械性能指標,並推廣至正交向量分析法則完成設計工具的發展,且獲得如下的好處:
(1)解決普魯克座標矩陣的物理單位非齊次性問題,讓普魯克座標矩陣奇異值所發展的性能指標,具有更客觀與明確物理意義的性能表示性。並整合性能指標與基底向量正交性分析法則的分析資料,充分掌握連桿指向與設計參數對於性能變化的影響趨勢。
(2)可以因應在實際工業應用上構型的不同應用狀況,設計出符合特定需求與應用的構型。
(3)在參數研究的過程中,能夠明確掌握設計規格的特性。並獲得將廣義HEXAPOD構型三軸及五軸性能圖示簡化的方法,增加性能分析的效率。
(4)提供完整的設計程序。經由本研究所法展的設計工具與程序可以快速地分析與設計平行機構。
[1] D. Stewart, “A platform with six degree of freedom,” Proc. Institution of Mechanical Engineers, Vol. 108, part1,No. 15, pp. 371-386, 1965.
[2] K. H. Hunt, “Structure kinematics of an parallel actuated robot arms,” Trans. ASME, J. Mechanics, Transitions, and Automation in Design, Vol. 105, No. 4, pp. 705-712, 1983.
[3] E. F. Fichter, “A Stewart platform-based manipulator: General theory and practical construction,” The international Journal of Robotic Research, Vol. 5, No. 2, pp. 157-186, 1986.
[4] M. Raghavan, “Stewart platform of general geometry has 40 configurations,” Trans. ASME, J. Mechanical Design, Vol. 115, No. 2, pp. 277-280, 1993.
[5] Z. Geng and L. S. Haynes,“ Six-degree-of-freedom active vibration isolation using a Stewart platform mechanism,” J. Robotic Systems, Vol. 10, No. 5, pp. 725-744, 1993.
[6] F. Bernelli-Zazzera and D. Gallieni, “Analysis and design of a hexapod mechanism for autonomous payload pointing,” 46th IFAC Congress, Oslo, 2-6, Oct., pp. 135-139, 1995.
[7] G. R. Dunlop, and T. P. Jones, “Gravity counter balancing of a parallel robot for antenna aiming,” 6th ISRAM, Montpellier, 28-30 May, pp. 153-158, 1996,.
[8] Heisel, U., and Gringel, M., 1996, “Machine tool design requirements for high-speed machining,” Annals of the CIRP, Vol. 45 ,No. 1, pp. 389-392.
[9] Warnecke, H. J., Neugebauer, R., and Wieland, F., 1998, “Development of Hexapod based machine tool,” Annals of the CIRP, Vol. 47 ,No. 1, pp. 337-340.
[10] Heisel, U., and Gringel, M., 1996, “Machine tool design requirements for high-speed machining,” Annals of the CIRP, Vol. 45 ,No. 1, pp. 389-392.
[11] Warnecke, H. J., Neugebauer, R., and Wieland, F., 1998, “Development of Hexapod based machine tool,” Annals of the CIRP, Vol. 47 ,No. 1, pp. 337-340.
[12] R. S. Stoughton and T. Arai, “A modified Stewart platform manipulator with improved dexterity,” IEEE transactions and automation, Vol. 9, No. 2, pp. 166-173, 1993.
[13] L. Romdhane “Design and analysis of a hybrid serial-parallel manipulator” Mechanism and Machine Theory, Vol. 34, pp. 1037-1055, 1998
[14] El-Mouloudi Dafaoui, Yacine Amirat, Jean Pontnau, and Christian Francois, ”Analysis and Design of a six-DOF parallel manipulator, Modeling , Singular Configurations,and Workspace,” IEEE transactions on robotics and automation, Vol. 14 , No. 1, pp. 78-92, 1998
[15] Min Ki Lee and Kun Woo Park, ”Kinematic and Dynamic analysis of a Double Parallel Manipulator for enlarging worksapce and avoiding singularities” IEEE transactions on robotics and automation, Vol. 15 , No. 6, pp1024-1034, 1999
[16] K. C. Cheok, “Exact method for determining the kinematics of Stewart platform using Additional Displacement Sensor,” J. of Robotic system, Vol. 10, No. 5, pp. 689-770, 1992.
[17] K. H. Pittens and R. P. Podhorodeski, “A family of Stewart platforms with optimal dexterity,” Journal of robotic systems, Vol. 10, No. 4, pp. 463-479, 1993.
[18] K. E. Zanganeh and J. Angeles, “Kinematic isotropy and the optimum design of parallel manipulators,” Int. J. Robotics Res., Vol. 16, No. 2, pp. 185-197, 1997.
[19] J. Lee, J. Duffy, and K. H. Hunt, “A practical quality index based on the octahedral manipulator,” Int. J. Robotics Res., Vol. 17, No. 10, pp. 1081-1090, 1998.
[20] T. Huang, D. J. Whitehouse, and J. Wang, “The local dexterity, optimal architecture and design criteria of parallel machine tools,” Annals of the CIRP, Vol. 47, No. 1, pp. 347-351, 1998.
[21] 蔡永生, 史都華平台五軸機械性能分析與設計程序, 清華大學動力機械工程學系碩士論文, 2000
[22] Leo J. Stocco, S. E. Salcudean and F. Sassani, “on the use of scalling matrices for Task-Specific robot design” IEEE transactions on robotics and automation, Vol. 15 , No. 5, pp958-965, 1999
[23] M. H. Perng and L. Hsiao, “Inverse kinematic solutions for a fully parallel robot with singularity avoidance,” Int. J. Robotics Res., Vol. 18, No. 6, pp. 575-583, 1999.
[24] K. E. Zanganeh and J. Angeles, “Kinematic isotropy and the optimum design of parallel manipulators,” Int. J. Robotics Res., Vol. 16, No. 2, pp. 185-197, 1997.
[25] P. Lancaster and M. Tismenetsky, The Theory of Matrices, New York: Academic Press, 1985.
[26] Robert S. Stoughton and Tatsou Ari, “A Modified Stewart Platform Manipulator with Improved Dexterity” IEEE transactions on robotics and automation, Vol. 9 , No. 2, pp166-173, 1993
[27] B. S. El-Khasawneh and P. M. Ferreira, “Computation of stiffness and stiffness bounds for parallel link manipulators,” Int. J. Machine Tools & Manufacture, Vol. 39, No. 2, pp. 321-342, 1999.