簡易檢索 / 詳目顯示

研究生: 張尹維
Chang, Yie-Wei
論文名稱: 低運算負載壓電式微機電超聲波測距系統開發
Development of Low Computation Burden Piezoelectric Ultrasound Transducers System for Distance Detection
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 李夢麟
LI, MENG-LIN
陳健章
Chen, Chien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 92
中文關鍵詞: 壓電式微機械超聲波換能器嵌入式系統超聲波收發系統飛時測距RF類比電路應用
外文關鍵詞: PMUT, Embedded System, Ultrasound System, Time of Flight, Application of RF Analog Circuit
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來,隨著微機電系統 (MEMS)技術的發展,推動了換能器微型化及系統整合的浪潮。而微機械超聲波換能器 (MUT)概念的問世,更是打破超聲波換能器陣列的限制和擴展超聲波的應用場域。因應這樣的浪潮,本研究提出一針對PMUT換能器的系統設計構想。該測距系統專為PMUT換能器建構,並對於超聲波換能器開發與測試需求設計。在驅動上有別於傳統超聲波系統,本系統選擇窄頻Burst訊號作為驅動源,最大可穩定提供25MHz、8Vpp的Burst訊號;於接收上則在盡量避免雜訊的情況下提供回波訊號57dB的增益,並以1.25MS/s的速度進行取樣。在飛時測距 (Time of Flight, TOF)功能方面,本系統實踐0.3412mm的測距準確度,和0.0687mm的測距精確度。除了上述的性能外,本系統亦具備三種測量模式、可調控的測量變數與原始數據回傳功能,允許換能器開發人員靈活的對其換能器進行探索。


    In this work, the design of an ultrasound system for distance detection implementing Piezoelectric Micromachined Ultrasonic Transducer (PMUT) is presented. This system is specially constructed for PMUT transducers and designed for the development and testing purpose of ultrasonic transducers.
    In terms of transmitting performance, the system can generate up to 25MHz, 8V_pp Burst signal as trigger source. On the other hand, regarding receiving performance, the system can amplify echo signals with low noise. Total gain of all amplifiers is 57dB. Based on great measurement performance abovementioned, the system features accurate time of flight (TOF) function. The accuracy and precision of the TOF function are 0.3412mm and 0.0687mm respectively.
    In addition to measurement function, the system provides three measurement modes, controllable measurement parameters and raw data export function. The system can help PMUT researcher to explore their design completely.

    目錄 i 表目錄 iv 圖目錄 v 致謝 viii 摘要 x ABSTRACT xi 第一章 緒論 1 1-1研究動機與目標 1 1-2超聲波探頭參數意義 5 1-3超聲波系統硬體設計概觀 5 1-4超聲波發射電路 7 1-4-1 脈衝產生器與High Voltage Amplifier 7 1-4-2 發射波束形成器 7 1-5 超聲波接收電路 9 1-5-1 T/R Switch 9 1-5-2 低噪音放大器和 Noise Figure Equation 9 1-5-3時間增益補償放大器與聲壓衰退率和訊號動態範圍 10 1-5-4 時間增益補償放大器與類比數位轉換器的連用 12 1-5-5 接收波束成形器 13 1-6 超聲波定位演算法研究 14 1-6-1 閾值交叉檢測法 (Threshold-Crossing Detection) 15 1-6-2 互相關檢測法 (Cross-Correlation) 15 1-7本文架構 16 第二章 硬體架構 18 2-1換能器介紹 18 2-2接收電路板 (RX板) 20 2-2-1 RF訊號類比前端電路 20 2-2-2 數位控制電路 23 2-3 發射電路 25 2-3-1目標Burst訊號介紹 26 2-3-2 驅動訊號產生電路 27 2-4 供電電路 29 2-5 硬體流程 32 2-6 硬體外觀、接頭與佈局設計 35 第三章 演算法與使用者介面設計 37 3-1韌體配置與事件流程 37 3-1-1 UART互動介面 37 3-1-2 SPI協定介面 40 3-1-3 Timer控制介面 42 3-1-4 韌體流程整合 45 3-2 TOF算法 48 3-3 MATLAB User-Interface 50 第四章 測量與實驗 52 4-1測量實驗裝置、設備與實驗架設 52 4-1-1 PMUT 對照組架設 53 4-1-2 PMUT實驗組架設 54 4-1-3商用超聲波換能器對照組架設 55 4-1-4商用超聲波換能器實驗組架設 56 4-2 換能器脈衝響應與頻率響應 57 4-2-1 PMUT換能器脈衝響應與頻率響應 57 4-2-2 商用超聲波換能器脈衝響應與頻率響應 59 4-3 系統發射性能驗證 60 4-3-1 PMUT換能器的驅動訊號 61 4-3-2商用超聲波換能器的驅動訊號 62 4-4 系統接收性能驗證 62 4-4-1 系統裝載PMUT換能器之接收性能驗證 62 4-4-2 系統裝載商用超聲波換能器之接收性能驗證 66 4-5 TOF功能可靠度驗證 70 4-5-1 面對面收發之TOF功能驗證 72 4-5-2 同側收發之TOF功能驗證 74 4-6 控制器外設時序驗證實驗 76 4-6-1 測量週期之外設時序驗證 77 4-6-2 ADC取樣品質驗證 78 第五章 結論與未來展望 79 5-1 結論 79 5-2 未來展望 80 5-2-1 實現以PMUT換能器完成系統TOF測量功能 80 5-2-2 供電電路板載化 81 5-2-3 第一級高阻抗低噪音放大器板載化 82 5-2-4 使用者介面優化 83 參考文獻 84 附錄 89

    1.J. Zhu, X. Liu, Q. Shi, T. He, Z. Sun, X. Guo, W. Liu, O. B. Sulaiman, B. Dong, and C. Lee, “Development Trends and Perspectives of Future Sensors and MEMS/NEMS,” in Micromachines, vol. 11, no. 1, Dec. 2020, doi: 10.3390/mi11010007.
    2.R. Bogue, “MEMS Sensors: Past, Present and Future,” in Sensor Review, Vol. 27 No. 1, pp. 7-13, 2007, doi: 10.1108/02602280710729068.
    3.A. Mustafazade, M. Pandit, C. Zhao et al., “ A Vibrating Beam MEMS Accelerometer for Gravity and Seismic Measurements,” in Scientific Reports, vol. 10, no. 10415, Jun. 2020, doi: 10.1038/s41598-020-67046-x.
    4.H. Cao, Q. Cai, Y. Zhang, C. Shen, Y. Shi and J. Liu, “ Design, Fabrication, and Experiment of a Decoupled Multi-Frame Vibration MEMS Gyroscope,” in IEEE Sensors Journal, vol. 21, no. 18, pp. 19815-19824, 15 Sep.15, 2021, doi: 10.1109/JSEN.2021.3095762.
    5.Y. -C. Lin, P. -H. Hong, S. -K. Yeh, C. -C. Chang and W. Fang, “ Monolithic Integration of Pressure/Humidity/Temperature Sensors for CMOS-Mems Environmental Sensing Hub with Structure Designs for Performances Enhancement,” 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 2020, pp. 54-57, doi: 10.1109/MEMS46641.2020.9056401.
    6.M. Ahmed, W. Xu, S. Mohamad, F. Boussaid, Y. -K. Lee and A. Bermak, “Fully Integrated Bidirectional CMOS-MEMS Flow Sensor With Low Power Pulse Operation,” in IEEE Sensors Journal, vol. 19, no. 9, pp. 3415-3424, 1 May1, 2019, doi: 10.1109/JSEN.2019.2891784.
    7.A. S. Savoia et al., “Design, Fabrication, Characterization, and System Integration of a 1-D PMUT Array for Medical Ultrasound Imaging,” 2021 IEEE International Ultrasonics Symposium (IUS), Xi'an, China, 2021, pp. 1-3, doi: 10.1109/IUS52206.2021.9593751.
    8.J. Joseph, B. Ma and B. T. Khuri-Yakub, “Applications of Capacitive Micromachined Ultrasonic Transducers: A Comprehensive Review,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 2, pp. 456-467, Feb. 2022, doi: 10.1109/TUFFC.2021.3112917.
    9.I. Cicek, A. Bozkurt and M. Karaman, “Design of a Front-End Integrated Circuit for 3D Acoustic Imaging Using 2D CMUT Arrays,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 12, pp. 2235-2241, Dec. 2005, doi: 10.1109/TUFFC.2005.1563266.
    10.Y. Qiu, J. V. Gigliotti, M. Wallace, F. Griggio, C. E. M. Demore, S. Cochran, and S. Trolier-McKinstry, “Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing,” in Actuation and Imaging Sensors, vol. 15, no. 4, pp. 8020-8041, Apr. 2015, doi: 10.3390/s150408020.
    11.Y. He, H. Wan, X. Jiang and C. Peng, “Piezoelectric Micromachined Ultrasound Transducer Technology: Recent Advances and Applications,” in Biosensors, vol. 13, no. 55, Dec. 2023, doi: 10.3390/bios13010055.
    12.STMicroelectronics, “Arm® Cortex®-M4 32-bit MCU+FPU, up to 512 KB Flash, 170 MHz /213DMIPS, 128 KB SRAM, Rich Analog, Math Accelerator,” STM32G473xB STM32G473xC STM32G473xE Datasheet (Rev. 4) , 2021.
    13.E. Brunner, “Ultrasound System Considerations and Their Impact on Front-End Components,” Analog Devices Inc., Wilmington, Massachusetts, USA, Mar. 2002.
    14.J. Kidav et al., “Design of a 128-Channel Transceiver Hardware for Medical Ultrasound Imaging Systems,” in IET Circuits Devices Syst, vol. 16, no. 1, pp. 92–104, Jun. 2021, doi: 10.1049/cds2.12087.
    15.A. Banuaji and H. -K. Cha, “A 15-V Bidirectional Ultrasound Interface Analog Front-End IC for Medical Imaging Using Standard CMOS Technology,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 604-608, Aug. 2014, doi: 10.1109/TCSII.2014.2327455.
    16.Y. Zhang and A. Demosthenous, “Integrated Circuits for Medical Ultrasound Applications: Imaging and Beyond,” in IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 5, pp. 838-858, Oct. 2021, doi: 10.1109/TBCAS.2021.3120886.
    17.C. A. Winckler, P. R. Smith, D. M. J. Cowell, O. Olagunju and S. Freear, “The Design of a High Speed Receiver System for an Ultrasound Array Research Platform,” 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 2012, pp. 1481-1484, doi: 10.1109/ULTSYM.2012.0370.
    18.L. Jonveaux, C. Schloh, W. Meng , J. Arija, and J. Rintoul, “Review of Current Simple Ultrasound Hardware Considerations, Designs, and Processing Opportunities,” in Journal of Open Hardware, vol. 6, no. 1, pp. 1-29, Feb. 2022, doi: https://doi.org/10.5334/joh.28
    19.P. Bhattaru and N. Krishnapura, “A 36dB Gain Range, 0.5dB Gain Step Variable Gain Amplifier with 10 to 25MHz Bandwidth Third-Order Filter for Portable Ultrasound Systems,” 2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded Systems (VLSID), Bangalore, India, 2020, pp. 96-100, doi: 10.1109/VLSID49098.2020.00034.
    20.Y. Wang, M. Koen and D. Ma, “Low-Noise CMOS TGC Amplifier With Adaptive Gain Control for Ultrasound Imaging Receivers,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 1, pp. 26-30, Jan. 2011, doi: 10.1109/TCSII.2010.2092822.
    21.白明憲(2012)。《工程聲學》。全華科技圖書公司。新北市。中華民國。
    22.Texas Instruments, “8-Channel, Programmable T/R Switch for Ultrasound,” TX810 datasheet (Rev. A), Mar. 2010.
    23.Microchip Technology, “4-Channel High Voltage Protection T/R Switch,” MD0105 Datasheet, 2018.
    24.D. Li, C. Fei, Q. Zhang, Y. Li, Y. Yang, Q. Zhou. “Ultrahigh Frequency Ultrasonic Transducers Design with Low Noise Amplifier Integrated Circuit,” in Micromachines, vol. 9, no. 10, pp.515, Oct. 2018, doi: 10.3390/mi9100515
    25.H. Shankar et al., “Potential Adverse Ultrasound-related Biological Effects: A Critical Review,” in Anesthesiology, vol. 115, pp. 1109-1124, Nov. 2011 , doi: 10.1097/ALN.0b013e31822fd1f1.
    26.Analog Device, “Ultralow Noise VGAs with Preamplifier and Programmable RIN Data Sheet,” AD8331/AD8332/AD8334 Datasheet (Rev. I), 2003.
    27.W. G. MaMullen, B. A. Delaughe and J. S. Bird, “A Simple Rising-Edge Detector for Time-of-Arrival Estimation,” in IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 4, pp. 823-827, Aug. 1996, doi: 10.1109/19.517003.
    28.B. Barshan, “Fast Processing Techniques for Accurate Ultrasonic Range Measurements,” in Measurement Science and Technology, vol. 11, no. 45, Dec. 1999, doi:10.1088/0957-0233/11/1/307.
    29.M. Parrilla, J. J. Anaya and C. Fritsch, “Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements,” in IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 4, pp. 759-763, Aug. 1991, doi: 10.1109/19.85348.
    30.J. C. Jackson, R. Summan, G. I. Dobie, S. M. Whiteley, S. G. Pierce and G. Hayward, “Time-of-Flight Measurement Techniques for Airborne Ultrasonic Ranging,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 2, pp. 343-355, Feb. 2013, doi: 10.1109/TUFFC.2013.2570.
    31.C.-Y. Liu, “Development of Piezoelectric Micromachined Ultrasonic Transducers for Range-finding Applications,” Ph.D. Dissertation, National Tsing Hua University, Feb. 2023.
    32.Analog Device, “Ultralow Power, Low Distortion, Fully Differential ADC Drivers,” ADA4940-1/ ADA4940-2 Datasheet (Rev. E), 2018.
    33.Silicon Laboratories, “USBXpress™ Family CP2102N Data Sheet,” CP2102N Data Sheet, Nov. 2020.
    34.STMicroelectronics, “MB1136-DEFAULT-C03 Board Schematic,” STM32 Nucelo Board schematic, Aug. 2020.
    35.Analog Device, “Programmable Frequency Sweep and Output Burst Waveform Generator,” AD5930 Datasheet (Rev. D), Jul. 2015.
    36.Analog Device, “Low Cost, High Speed, Rail-to-Rail Amplifiers,” AD8051/AD8052/AD8054 Datasheet (Rev. K), Jul. 2009.
    37.ABRACON, “3.3V CMOS SMD Crystal Oscillator,” ASE SERIES Datasheet, Mar. 2014.
    38.Linear Technology, “LT1962 Series: 300mA, Low Noise, Micropower LDO Regulators,” LT1962 Datasheet (Rev. B), May. 2000.
    39.Texas Instruments, “Precision Low Dropout Voltage Reference,” LM4132, LM4132-Q1 SOT-23 Datasheet (Rev. F), Mar. 2016.
    40.Texas Instruments, “LM266x Switched Capacitor Voltage Converter,” LM266x Datasheet, Oct. 2014.
    41.Verasonics, “The VantageTM Systems 256, 128, 64 LE, 64 and 32 LE,” VantageTM System Datasheet, 2023.

    QR CODE