簡易檢索 / 詳目顯示

研究生: 林昇輝
Sheng-Hui Lin
論文名稱: 奈米結構氧化鎳之電致色變特性研究
Electrochromic Properties of Nano-structured Nickel Oxide
指導教授: 開執中
Ji-Jung Kai
陳福榮
Fu-Rong Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 135
中文關鍵詞: 電致色變氧化鎳奈米複合奈米結構ITO奈米顆粒
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電致色變現象(electrochromism)泛指當材料被施加不同直流電壓或電流時,該材料會可逆地改變對光線的吸收度進而呈現不同的顏色變化。氧化鎳在做為電致色變元件的主要變色層(primary electrochrome)時,其光學對比度高,材料本身也較低廉且易取得;另一方面,氧化鎳也具備做為次要變色層(secondary electrochrome)的能力,它與目前實際應用程度最高的氧化鎢,組成互補式電致色變元件,為一極佳的選擇。
    目前無機電致色變元件中的電致色變材料大部份都是以薄膜的型態存在。但由於電致色變材料是藉由外加電子與電解質中的離子擴散進出薄膜來進行氧化還原反應,所以此種薄膜結構不利於離子的擴散與電子的傳遞,使得相關電致色變技術長久以來存在著反應速度緩慢與循環壽命不佳的問題。因此,本研究探討奈米結構電致色變材料的基礎性質與其應用性,利用隨機排列的導電奈米顆粒做為一多孔隙的導電介質,再以不同的製程方法將氧化鎳電致色變材料包覆在導電奈米顆粒上。此新結構具有多孔隙及奈米複合材料的特性,可使電解質滲入整個結構中來增加彼此的接觸面積,進而提升氧化還原反應速度及改善循環壽命。
    本研究主要分為二個部份:
    第一部份為利用噴霧熱分解法(spray pyrolysis technique, SPT)在多孔性的ITO奈米顆粒導電層上形成奈米結構型氧化鎳層(nano-structured nickel oxide layer, NSNO)。此新型結構在光譜對比及反應速度均有改善,但並不顯著。主要是以噴霧熱分解法所製備的工作電極,氧化鎳電致色變材料只有覆蓋在多孔隙導電層的表層,其反應面積增加有限。但從循環伏安圖及光譜圖可知,新型的奈米結構使得氧化鎳薄膜的循環壽命大幅改善。經過2000次循環後,其穿透率對比只衰退5 %,而一般薄膜則衰退了37 %。顯示在長時間的循環下,奈米結構型氧化鎳層的循環壽命優於一般氧化鎳薄膜。
    第二部份為利用電鍍法(electro-deposition method),以0.2 M硝酸鎳水溶液為電鍍液,在多孔性的ITO奈米顆粒導電層上製備工作電極,熱處理後可得到新穎的奈米複合型氧化鎳層(nano-composite nickel oxide layer, NNO)。由TEM及SEM/EDX elemental maps 分析可知,所製備的奈米複合型氧化鎳層是NiO/ITO的core-shell結構。新型的奈米複合型氧化鎳層在552 nm有最大的穿透率對比(66.3 %),一般氧化鎳薄膜只有55.7 %,兩者的差異超過10 %。且奈米複合型氧化鎳層的著去色反應速度是一般氧化鎳薄膜的2.3倍。顯示此新型結構有效改善薄膜的光譜特性及反應速度。此外與第一部份相同,此奈米複合結構亦大幅改善薄膜的循環壽命,試片至2000次循環的穿透率對比仍維持不變;而一般氧化鎳薄膜則已衰退了67 %。
    本研究成功發展出新穎的奈米結構型氧化鎳層與奈米複合型氧化鎳層,此兩種結構皆具有優異的循環壽命,同時奈米複合型氧化鎳層更具有良好的電致色變性質,能更符合商業化應用之期待。而本研究的製程簡單,亦有利於在工業上的應用。


    Electrochromic (EC) materials, which are able to change their optical properties reversibly upon charge insertion/extraction, have received high attention due to their unique characteristics in the past decades. Among inorganic EC materials, nickel oxide is considered to be a good anodic candidate because it has low material cost and an excellent contrast. Usually, nickel oxide is used as a counter-electrode in complementary EC devices assembled with a cathodic EC electrode, such as tungsten oxide.
    Coloration of inorganic EC devices depends upon ion-intercalation into the transition metal oxide film. Therefore, the switching speeds of coloring/bleaching are limited by ion transporting into a solid metal oxide film. To obtain sufficient optical contrast, large charge (ion/electron) insertion and extraction must extend to the bulk of the EC film. Consequently, the switching time of such devices is typically in the order of tens seconds to minutes, even for small area devices. On the contrary, a fast-switching device may result in insufficient optical contrast because of less ion-intercalation.
    In this study, transparent ITO nano-particles are sprayed on ITO coated glass substrates to form a porous conducting network. And then nickel oxide films are deposited onto this substrate by two methods. The porous structure provides large active surface area for charge insertion and extraction. This nano-structure leads to large surface area for depositing EC materials. Electrolyte can penetrate through the porous nano-structured film. When an electrochemical redox reaction carried out, ion intercalation and charge compensation could happen rapidly at or near the electrode/electrolyte interface.

    This dissertation contents two parts:
    Part I: A nano-structured nickel oxide (NSNO) based EC electrode was successfully produced by a spray pyrolysis technique (SPT) onto the porous ITO nano-particle layer. In this case, the improvements in the switching speed and transmittance contrast were not obvious. It is because the NSNO film prepared by SPT only covers the top surface of the ITO nano-particle layer. With this porous structure, however, the NSNO based EC electrodes showed great improvement in the cycling durability.
    Part II: In the present work, the nickel oxide film is prepared using an electro-deposition method followed by a thermal oxidation process. It is intended to form a nano-composite nickel oxide (NNO) layer. From the elemental maps and TEM images, we ensure that the nickel oxide completely covers the whole surface of ITO nano-particle layer and forms the core-shell structure with ITO nano-particles instead of just covering top surface of the ITO nano-particle layer. High porosity in the NNO layer offers large active surface area for redox reaction. Electrochromic electrodes fabricated with the NNO layers produce high transmittance variation (66.3% at a wavelength of 552 nm), fast switching speed (coloring: 3.8 sec, bleaching: 3.0 sec) and good durability (over 2000 cycles without degradation), which are much better than those of ones made with the traditional nickel oxide films. These good EC properties promote the potential application of the NNO structure for EC devices.

    第一章、序論 1 1-1前言 1 1-2研究動機與內容 3 第二章、文獻回顧 6 2-1電致色變介紹 6 2-1-1電致色變原理 6 2-1-2電致色變元件結構 6 2-1-3電致色變元件類型 8 2-1-4電致色變材料簡介 10 2-1-5導離子電解質 12 2-1-6互補式電致色變元件 12 2-1-7電致色變元件的應用 13 2-2氧化鎳簡介 15 2-2-1氧化鎳電致色變材料 15 2-2-2氧化鎳電致色變原理 16 2-2-3氧化鎳鍍膜製備方法及相關研究 17 2-3奈米技術在電致色變元件上的應用 19 2-4熱分解噴塗法簡介 21 2-5電鍍法法簡介 22 第三章、實驗步驟與分析方法 42 3-1實驗目的與實驗流程 42 3-2實驗藥品與儀器設備 43 3-3噴霧熱分解法製備氧化鎳薄膜 44 3-3-1 ITO玻璃基板前處理 44 3-3-2以噴霧熱分解法製備一般薄膜型氧化鎳電致色變層(SPT-CNO) 44 3-3-3 ITO奈米顆粒層的製備 44 3-3-4以噴霧熱分解法製備奈米結構型氧化鎳層(NSNO) 45 3-4定電流電鍍法製備氧化鎳薄膜 45 3-5分析儀器 46 3-5-1掃描式電子顯微鏡 46 3-5-2穿透式電子顯微鏡 47 3-5-3電鏡試片製備 47 3-5-4 X光繞射分析 47 3-5-5定電流/定電位儀 48 3-5-5紫外光/可見光光譜分析儀 49 第四章、實驗結果與討論 55 4-1噴霧熱分解法製備氧化鎳電致色變材料 55 4-1-1噴霧熱分解法製程參數設定 55 4-1-1-1先驅物噴塗量 56 4-1-1-2基板溫度 56 4-1-1-3熱處理 57 4-1-2表面型態與結構分析 59 4-1-3奈米結構型氧化鎳與一般氧化鎳薄膜之分析 60 4-1-3-1 ITO奈米顆粒分散程度與NSNO表面型態 61 4-1-3-2光譜特性 62 4-1-3-3階梯電位響應分析 63 4-1-3-4循環壽命分析 64 4-1-4小結 65 4-2電鍍法製備奈米複合氧化鎳電致色變材料 67 4-2-1電鍍法製備薄膜 67 4-2-2薄膜微結構分析 68 4-2-2-1結構分析 68 4-2-2-2表面型態 68 4-2-2-3薄膜孔隙率分析 69 4-2-3電化學分析 71 4-2-3-1循環伏安分析 71 4-2-3-2交流阻抗分析 72 4-2-4電致色變性質分析 73 4-2-4-1光譜特性 73 4-2-4-2著色效率分析 74 4-2-4-3反應速度 75 4-2-4-4循環壽命分析 76 4-2-5小結 78 4-3不同製程方法對氧化鎳電致色變行為之比較與影響 79 4-3-1氧化鎳薄膜的電致色變機制 79 4-3-2噴霧熱分解法與電鍍法製備氧化鎳薄膜的電致色變性質分析 80 4-3-3薄膜結構的比表面積分析 81 4-3-4比表面積與變色反應速度分析 81 第五章、結論與建議 129 5-1結論 129 5-1建議 134

    Chap2 References
    [1] J.R. Platt, J. Chem. Phys. 34 (1961) 862.
    [2] S. K. Deb, U. S. Patent 3,521,941 (1970).
    [3] C.G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, 1995.
    [4] P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, New York (1995).
    [5] R. D. Rauh, Electrochim. Acta 44 (1999) 3165.
    [6] M. A. Habib and D. Glueck, Sol. Energy mater., 18 (1989) 127.
    [7] T. Yoshino, N. Bada, H. Masuda, and K. Arai, in Electrochromic materials, M. K. Carpenter and D. A. Corrigan, Editors, PV 90-2, pp.89-98, The Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1990).
    [8] P. Pflunger, H. Kunzi, and H. Guntherodt, Appl. Phys. Lett., 35 (1979) 771.
    [9] J. Nagai, Sol. Energy Mater. and Sol. Cells, 31 (1993) 291.
    [10] S. Gottesfeld, J. Electrochem. Soc., 127 (1980) 272.
    [11] K. Boufker, J. Appl. Electrochem., 25 (1995) 797.
    [12] T. Ohtasuka, M. Masuda, and N. Sato, J. Electrochem. Soc., 134 (1987) 2406.
    [13] K. Itaya, K. Shibayama, H. Akahshi, and S. Toshima, J. Appl. Phys., 53 (1982) 804.
    [14] D. D. Deford and A. W. Davidson, J. Am. Chem. Soc., 73 (1951) 1469.
    [15] Z. Gao, G. Wang, P. Li, and Z. Zhao, Electrochim. Acta, 36(1991) 36.
    [16] P. J. Kulesza, M. Faszynska, J. Electroanal. Chem., 252 (1988) 461.
    [17] S. H. Kim, S.B. Lee, Electrochromism of conducting polymer nanotubes, in: 6th International Meeting on Electrochromism (2004) 106-109.
    [18] R. V. Pole, G. T. Sincerbox, and M. D. Shattuck, Appl. Phys. Lett., 28 (1976) 494.
    [19] C. J. Schoot, J. J. Ponjee, H. T. van Dam, R. A. Van Doorn, and P. T. Bolwijn, Appl. Phys, Lett., 23 (1973) 64.
    [20] K. Bange and T. Gambke, Adv. Mater. 2 (1990) 10.
    [21] H. J. byker, U.S. Patent, 4,902,108 (1990).
    [22] J. H. Brechtel and H. J. Byker, U.S. Patent, 4,917,477 (1990).
    [23] N. Ohshima, M. Nakada, Y. Tsukamoto, , Jap. J. Appl. Phys. 35 (1996) L1585.
    [24] O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, Journal of Magnetism and Magnetic Materials 226-230 (2001) 1627.
    [25] B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, 3rd
    edition, Prentice Hall, p.48 (2001).
    [26] G.A. Niklasson, C.G. Granqvist, J. Mater. Chem. 17 (2007) 127.
    [27] B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, Vacuum 68 (2003) 149.
    [28] S. Gottesfeld, J. D. E. McIntyre, G. Beni and J. L. Shay, Appl.
    Phys. Lett., 33 (1978) 208.
    [29] P.S. Patil, , R.K. Kawar, S.B. Sadale, Applied Surface Science 249 (2005) 367–374.
    [30] J. S. E. M. Svensson, C. G. Granqvist, Appl. Phys. Lett., 49 (1986) 1566.
    [31] L.D. Kadam, P.S. Patil, Sol. Energy Mater. Sol. Cells 69 (2001) 361.
    [32] H. Kamal, E.K. Elmaghraby, S.A. Ali, K. Abdel-Hady, Thin Solid Films 483 (2005) 330.
    [33] C.M. Lampert, T.R. Omstead, P.C. Yu, Solar Energy Materials, 14 (1986) 161-174.
    [34] P.C. Yu, G. Nazri and C.M. Lampert, Solar Energy Materials,16 (1987) 1-17.
    [35] S. Yueyan, Z. Zhiyang and Y. Xiaoji, Solar Energy Materials and Solar Cells, 71 (2002) 51-59.
    [36] K. Nakaoka, J. Ueyama and K. Ogura, Journal of Electroanalytical Chemistry, 571 (2004) 93-99.
    [37] I.Porqueras, E.Bertran, Thin Solid Films 398-399 (2001) 41-44.
    [38] A. Agrawal, H.R. Habibi, R.K. Agrawal, J.P. Cronin, D.M. Roberts, R. Caron-Popowich and C.M. Lampert, Thin solid Films, 221 (1992) 239-253.
    [39] A. Šurca, B. Orel and B. Pihlar, Journal of Sol-Gel Science and Technology, 8 (1997) 743-749.
    [40] M. Ristova, J. Velevska, M. Ristov, Solar Energy Materials & Solar Cells 71 (2002) 219.
    [41] S.A. Mahmoud, S.A. Aly, M. Abdel-Rahman, K. Abdel-Hady, Physica B 293 (2000) 125–131.
    [42] Y. Sato, M. Ando, K. Murai, Solid State Ionics 113-115 (1998) 443.
    [43] J.L. Garcia-Miquel, Q. Zhang, S.J. Allen, A. Rougier, A. Blyr, H.O. Davies, A.C. Jones, T.J. Leedham, P.A. Williams and S.A. Impey, Thin Solid Films, 424 (2003) 165-170.
    [44] E. Avenda□o, A. Azens, G.A. Niklasson, C.G. Granqvist, Solar Energy Materials & Solar Cells 84 (2004) 337.
    [45] K.-S Ahn, Y.-C Nah and Y.-E Sung, Applied Surface Science, 199 (2002) 259-269.
    [46] A. Azens, J. Isidorsson, R. Karmhag and C. G. Granqvist, Thin Solid Films, 422 (2002) 1-3.
    [47] J. Arakaki, R. Reyes, M. Horn, W. Estrada, Solar Energy Mater. and Solar Cells 37 (1995) 33-41.
    [48] I. Bouessay, A. Rougier, B. Beaudoin, J.B. Leriche, Applied Surface Science, 186 (2002) 490.
    [49] I. Bouessay, A. Rougier, P. Poizot, J. Moscovici, A. Michalowicz, J.-M. Tarascon, Electrochimica Acta, 50 (2005) 3737-3745.
    [50] T. Maruyama and S. Arai, Solar Energy Materials and Solar Cells, 30 (1993) 257-262.
    [51] M. Gomez, A. Medina, W. Estrada, Solar Energy Mater. and Solar Cells 64 (2000) 297-309.
    [52] S.R. Jiang, B.X. Feng, P.X. Yan, X.M. Cai, S.Y. Lu, Applied Surface Science 174 (2001) 125-131.
    [53] I.Porqueras, E.Bertran, Thin Solid Films 398-399 (2001) 41-44.
    [54] I. Bouessay, A. Rougier, J.-M. Tarascon, J. Electrochem. Soc. 151 (2004) H145-H152.
    [55] Kokai, Japan Patent No.51-23100 (1976).
    [56] David Cummins, Gerrit Boschloo, Michael Ryan, David Corr, S. Nagaraja Rap, and Donald Fitzmaurice, J. Phys. Chem. B 104 (2000) 11449-11459.
    [57] J. Liu, J. P. Coleman, Mater. Sci. Eng., A286, 144 (2000)
    [58] K. Nishio, K. Iwata and H. Masuda, Electrochemical and Solid-State Letters, 6, H21 (2003)
    [59] Dean M. Delongchamp and Paula T. Hammond, Chem. Mater. 16 (2004) 4799-4805.
    [60] S.I. Cho, W.J. Kwon, S.J. Choi, P. Kim, S.A. Park, J. Kim, S.J. Son, R. Xiao, S.H. Kim, S.B. Lee, Adv. Mater. 17 (2005) 171.
    [61] C.C. Liao, F.R. Chen, J.J. Kai, Solar Energy Materials & Solar Cells 90 (2006) 1147.
    [62] K.C. Cheng, F.R. Chen, J.J. Kai, Solar Energy Materials & Solar Cells 90 (2006) 1156.
    [63] D. Perednis, L.J. Gauckler, Journal of Electroceramics 14(2005) 103-111.
    [64] K.-W. Nam, K.-B

    Chap4 References
    [1] Marcio Vidotti, Christhiaan van Greco, Eduardo A. Ponzio, Susana I. C□rdoba de Torresi, Electrochemistry Communications 8 (2006) 554.
    [2] A.E. Aliev, H.W. Shin, Solid State Ionics 154-155 (2002) 425.
    [3] A. Baserga, V. Russo, F. Di Fonzo, A. Bailini, D. Cattaneo, C.S. Casari, A. Li Bassi, C.E. Bottani, Thin Solid Films 515 (2007) 6465.
    [4] P. Bonhote, E. Gogniat, F. Campus, L. Walder, M. Gratzel, Displays 20 (1999) 137–144.
    [5] Dean M. Delongchamp and Paula T. Hammond, Chem. Mater. 16 (2004) 4799-4805.
    [6] Dean M. Delongchamp and Paula T. Hammond, Adv. Funct. Mater. 14 (2004) 224-232.
    [7] M. Gratzal, Nature 409 (2001) 575–576.
    [8] S.I. Cho, W.J. Kwon, S.J. Choi, P. Kim, S.A. Park, J. Kim, S.J. Son, R. Xiao, S.H. Kim, S.B. Lee, Adv. Mater. 17 (2005) 171.
    [9] K.C. Cheng, F.R. Chen, J.J. Kai, Solar Energy Materials & Solar Cells 90 (2006) 1156.
    [10] C.C. Liao, F.R. Chen, J.J. Kai, Solar Energy Materials & Solar Cells 90 (2006) 1147.
    [11] C.C. Liao, F.R. Chen, J.J. Kai, Solar Energy Materials & Solar Cells 91 (2007) 1258.
    [12] J. Arakaki, R. Reyes, M. Horn, W. Estrada, Solar Energy Materials & Solar Cells 37 (1995) 33.
    [13] M. Gomez, A. Medina, W. Estrada, Solar Energy Mater. and Solar Cells 64 (2000) 297–309.
    [14] Y. Makimura, A. Rougier, J.M. Tarascon, Applied Surface Science 252 (2006) 4593.
    [15] N. Penin, A. Rougier, L. Laffont, P. Poizot, J.M. Tarascon, Solar Energy Materials & Solar Cells 90 (2006) 422.
    [16] I. Bouessay, A. Rougier, J.-M. Tarascon, J. Electrochem. Soc. 151 (2004) H145.
    [17] D. R. Lide, CRC Handbook of Chemistry and Physics, 73rd edn,
    CRC Press, Boca Raton, USA, 2000.
    [18] S.H. Lin, F.R. Chen, J.J. Kai, Applied Surface Science 254 (2008) 2017.
    [19] K.C. Cheng, F.R. Chen, J.J. Kai, Electrochimica Acta 52 (2007) 3330.
    [20] C.C. Liao, F.R. Chen, J.J. Kai, Solar Energy Materials & Solar Cells 91 (2007) 1282.
    [21] K.C. Cheng, J.J. Kai, F.R. Chen, Electrochimica Acta 52 (2007) 6554.
    [22] 張立德, “奈米複合材料”, 五南圖書出版股份有限公司, 2004.
    [23] David Cummins, Gerrit Boschloo, Michael Ryan, David Corr, S. Nagaraja Rap, and Donald Fitzmaurice, J. Phys. Chem. B 104 (2000) 11449.
    [24] K.-W. Nam, K.-B. Kim, “A study of preparation NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism”, J. Electrochem. Soc. 149 (2002) 346-354.
    [25] F.F. Ferreira, M.H. Tabacniks, M.C.A. Fantini, I.C. Faria, A. Gorenstein, Solid State Ionics 86-88 (1996) 971.
    [26] S.A. Mahmoud, S.A. Aly, M. Abdel-Rahman, K. Abdel-Hady, Physica B 293 (2000) 125–131.
    [27] K.-S. Ahn, Y.-C. Nah, Y.-E. Sung, Solid State Ionics 165 (2003)155.
    [28] S.-J. Yoo, J.W. Lim, Baeck Choi, Y.-E. Sung, J. Electrochem. Soc. 154 (2007) P6.
    [29] P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, New York (1995).
    [30] Y. Abe, S.-H. Lee, E.O. Zayim, C.E. Tracy, J.R. Pitts, S.K. Deb, Electrochem. Solid-State Lett. 9 (2006) G17.
    [31] M. Ristova, J. Velevska, M. Ristov, Solar Energy Materials & Solar Cells 71 (2002) 219.
    [32] Y. Sato, M. Ando, K. Murai, Solid State Ionics 113-115 (1998) 443.
    [33] K.C. Cheng, J.J. Kai, F.R. Chen, Electrochimica Acta 52 (2007) 6554.
    [34] S.-H. Lin, et al., Electrochromic properties of nano-composite nickel oxide film, Appl. Surf. Sci. (2007), doi:10.1016/j.apsusc.2007.11.022
    [35] I. Bouessay, A. Rougier, P. Poizot, J. Moscovici, A. Michalowicz, J.-M. Tarascon, Electrochimica Acta, 50 (2005) 3737-3745.
    [36] I. Bouessay, A. Rougier, B. Beaudoin, J.B. Leriche, Applied Surface Science, 186 (2002) 490.
    [37] S.R. Jiang, B.X. Feng, P.X. Yan, X.M. Cai, S.Y. Lu, Applied Surface Science 174 (2001) 125-131.
    [38] Jao van de Lagemaat, Kurt D. Benkstein, and Arthur J. Frank, J. Phys. Chem. B, Vol. 105, No. 50, (2001) 12433-12436.
    [39] B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, Vacuum 68 (2003) 149.
    [40] K.-S. Ahn, Y.-C. Nah, Y.-E. Sung, J. Appl. Phys. 92 (2002) 1268.
    [41] 胡啟章, “電化學原理與方法”, 五南圖書出版公司.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE