研究生: |
高健銘 |
---|---|
論文名稱: |
奈米結構對輕薄化之矽晶片表面缺陷造成應力集中現象之影響 Effect of Nano Structure to Stress Concentration Caused by Thinning Silicon Chip Surface Defect |
指導教授: | 葉孟考 |
口試委員: |
葉銘泉
蔡佳霖 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 奈米結構 、裂縫 、應力集中 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的太陽能電池產業中,大量的使用矽晶片做為太陽能電池的基板,而將矽晶片輕薄化除了可減少成本,更可避免過度使用造成矽材料的短缺與能源的浪費。然而無論是在矽晶片的製造或輕薄化的過程中,都有可能使矽晶片表面產生缺陷,在缺陷處容易有應力集中的現象發生,且容易成為破壞的起始點。本研究利用有限單元分析軟體,首先探討裂縫物理參數對應力集中的影響,對不同的裂縫深度、裂縫尖端曲率半徑、有限單元分析軟體的單元類型以及單元形狀進行分析,接著探討奈米結構之太陽能矽晶片輕薄化後對機械強度之影響,最後進行金字塔奈米結構對表面缺陷處應力集中現象影響之研究,包含輕薄化前與輕薄化後之結果與討論。此外經由四點彎矩實驗證明奈米結構能有效增加矽晶片之機械強度,並且透過實驗來驗證模擬的結果。本研究所得到之結果能為矽晶片輕薄化以及使用奈米結構提高矽晶片機械強度之相關研究提供參考。
1. B. Yang, X. Chen, “Alumina Ceramics Toughened by a Piezoelectric Secondary Phase, ” Journal of the European Ceramic Society, Vol. 20, pp. 1687-1690, 2000.
2. S. Sung, X. Guo, K. Huang, F. Chen, H. Shih, “The Strengthening Mechanism of DLC Film on Silicon by MPECVD, ” Thin Solid Films, Vol. 315, pp. 345-350, 1998.
3. W. Nix, T. Kenny, “What is the Young’s Modulus of Silicon?, ” Journal of Microelectromechanical Systems, vol. 19, No. 2, 2010.
4. S. Sundararajan, B. Bhushan, T. Namazu, Y. Isono, “Mechanical Property Measurements of Nanoscale Structures Using an Atomic Force Microscope, ” Ultramicroscopy, Vol. 91, pp. 111-118, 2002.
5. X. Li, B. Bhushan, K. Takashima, C. Baek, Y. Kim, “Mechanical Characterization of Micro/nanoscale Structures for MEMS/NEMS Applications Using Nanoindentation Techniques, ” Ultramicroscopy, Vol. 97, pp. 481-494, 2003.
6. K. Petersen, “Silicon as a Mechanical Material, ” Proceedings of the IEEE, Vol. 70, No. 5, 1982.
7. C. Wilson, A. Ormeggi and M. Narbutovskih, “Fracture Testing of Silicon Microcantilever Beams, ” Journal of Applied Physics, Vol. 79, No. 5, pp. 2386-2393, 1996.
8. B. Leffler, “Stainless Steel and Their Properties, ” Welding Journal, 2000.
9. F. Morin, J. Maita, “Electrical Properties of Silicon Containing Arsenic and Boron, ” Physical Review, Vol. 96, pp. 28-35, 1954.
10. C. Sun, W. Fan, C. Cheng, C. Lin and K. Huang, “Templated Fabrication of Large Area Subwavelength Antireflection Gratings on Silicon, ” Applied Physics Letters, Vol. 91 pp. 231105, 2007.
11. H. Chen, W. Fan, C. Chen, C. Lin and K. Huang, “Fabrication of Texturing Antireflection Structures in Solar Cells by Using the Defocusing Exposure in Optical Lithography, ” Journal of The Electrochemical Society, Vol. 153, pp. G802-G806, 2006.
12. Z. Xi, D. Yang, W. Dan, C. Jun, X. Li and D. Que, “Texturization of Cast Multicrystalline Silicon for Solar Cells, ” Semiconductor Science and Technology, Vol. 19, pp. 485-489, 2004.
13. J. Lee, N. Lakshminarayan, S. Dhungel, K. Kim and J. Yi, “Optimization of Fabrication Process of High-Efficiency and Low-Cost Crystalline Silicon Solar Cell for Industrial Applications, ” Solar Energy Materials and Solar Cells, Vol. 93 pp. 256-261, 2009.
14. T. Yagi, Y. Uraoka, T. Fuyuki, “Ray-trace Simulation of Light Trapping in Silicon Solar Cell with Texture Structures, ” Solar Energy Materials & Solar Cells, Vol. 90, pp. 2647-2656, 2006.
15. E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Mijs, “Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells, ” Solar Energy Materials & Solar Cells, Vol. 57, pp. 179-188, 1999.
16. M.Karimirad, Comprehensive Renewable Energy, Elsevier Science, 2012.
17. Z. Yue, H. Shen, Y. Jiang, “Antireflective Nanostructures Fabricated by Reactive Ion Etching Method on Pyramid-structured Silicon Surface, ” Applied Surface Science, Vol. 271, pp. 402-406, 2013.
18. B. Cantor, C. Allen, R. Dunin-Burkowski, M. Green, J. Hutchinson, K. O’Reilly, A. Petford-Long, P. Schumacher, J. Sloan, P. Warren, “Applications of Nanocomposites, ” Scripta Materialia, Vol. 44, pp. 2055-2059, 2001.
19. B. Ji, H. Gao, “Mechanical Properties of Nanostructure of Biological Materials, ” Journal of the Mechanics and Physics of Solids, Vol. 52, pp. 1963-1990, 2004.
20. S. Zhang, Y. Fu, H. Du, Y. Liu, T. Chen, “Nanocomposite Thin Films for both Mechanical and Functional Applications, ” 2004.
21. R. Andrievski1, A. Glezer, “Size Effects in Properties of Nanomaterials, ” Scripta Materialia, Vol. 44, pp.1621-1624, 2001.
22. B. Stephens, D. Cody, “Optical Reflectance and Transmission of a Textured Surface, ” Thin Solid Films, Vol. 45, pp. 19-29, 1977.
23. C. Sanchez, H. Arribart, M. Guille, “Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems, ” Nature Materials, Vol. 4, pp. 277-288, 2005.
24. A. Parker, C. Lawrence, “Water Capture by a Desert Beetle, ” Nature, Vol. 414, pp. 33-34, 2001.
25. F. Song, K. Lee, A. Soh, F. Zhu, Y. Bai, “Experimental Studies of the Material Properties of the Forewing of Cicada (Homoptera, Cicadidae), ” Journal of Experimental Biology, Vol. 207, pp. 3035-3042, 2004.
26. P. Stoddart, P. Cadusch, T. Boyce, R. Erasmus, J. Comins, “Optical Properties of Chitin: Surface-enhanced Raman Scattering Substrates Based on Antireflection Structures on Cicada Wings, ” Nanotechnology, Vol. 17, pp. 680-686, 2006.
27. P. Vukusic, J. Sambles, “Photonic Structure in Biology, ” Nature, Vol. 424, pp. 852-855, 2003.
28. T. Sun, L. Feng, X. Gao, L. Jiang, “Bioinspired Surfaces With Special Wettability, ” Accounts of Chemical Research, Vol. 38, pp. 644-652, 2005.
29. S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, L. Chen, “Anti-reflecting and Photonic Nanostructures, ” Materials Science and Engineering R, Vol. 69, pp. 1-35, 2010.
30. S. Dhamodaran, D. Sathish Chander, J. Ramkumar, “Anti-reflective and Hydrophobic Surface of Self-organized GaN Nano-flowers, ” Applied Surface Science, Vol. 257, pp. 9612-9615, 2011.
31. G. Xie, G. Zhang, F. Liu, S. Mu, “The Fabrication of Subwavelength Anti-reflective Nanostructures Using a Bio-template, ” Nanotechnology, Vol. 19, pp. 095605-095610, 2008.
32. X. Feng, L. Jiang, “Design and Creation of Superwetting/Antiwetting Surfaces, ” Advanced Materials, Vol. 18, pp. 3063-3078, 2006.
33. R. Blossey, “Self-cleaning Surfaces – Virtual Realities, ” Nature Materials, Vol. 2, pp. 301-306, 2003.
34. P. Suresh Kumar, J. Sundaramurthy, X. Zhang, D. Mangalaraj, V. Thavasi, S. Ramakrishna, “Superhydrophobic and Antireflecting Behavior of Densely Packed and Size Controlled ZnO Nanorods, ” Journal of Alloys and Compounds, Vol. 553, pp. 375-382, 2013.
35. K. Askara, M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, B. Jiang, “Self-assembled Self-cleaning Broadband Anti-reflection Coatings, ” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013.
36. Y. Liu, Y. Xiu, C. Wong, “Micro/Nano Structure Size Effect on Superhydrophobicity and Anti Reflection of Single Crystalline Si Solar Cells, ” Electronic Components and Technology Conference, pp. 1719-1724, 2010.
37. Z. Dimitrova, C. Du, “Crystalline Silicon Solar Cells with Micro/nano Texture, ” Applied Surface Science, 2012.
38. Z. Huang, N. Geyer, P. Werner, J. Boor, U. Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review, ” Adv. Mater. Vol. 23, pp. 285-308, 2011.
39. Z. J. Pei, A. Strasbaugh, “Fine Grinding of Silicon Wafers, ” International Journal of Machine Tools & Manufacture, Vol. 41, pp. 659-672, 2001.
40. Z. J. Pei, S. R. Billingsley, S. Miura, “Grinding Induced Subsurface Cracks in Silicon Wafers, ” International Journal of Machine Tools & Manufacture, Vol. 39, pp. 1103-1116, 1999.
41. H. Ohmori, T. Nakagawa, “Analysis of Mirror Surface Generation of Hard and Brittle Materials by ELID Grinding with Superfine Grain Metallic Bond Wheels, ” Annals of CIRP 44, pp. 287-290, 1995.
42. H. K. Xu, S. Jahanmir, L. K. Ives, “Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride, ” J. Mater. Res, Vol. 11, pp. 1717-1724, 1996.
43. B. Zhang, T. D. Howes, “Subsurface Evaluation of Ground Ceramics, ” Annals of CIRP, Vol. 44, pp. 263-266, 1995.
44. Z. Zhong, V.C. Venkatesh, “Surface Integrity Studies on the Grinding, Lapping and Polishing Processes for Optical Products, ” J. Mater. Process. Technol, Vol. 44, pp. 179-186, 1994.
45. H. K. Tonshoff, B. Karpuschewski, M. Hartmann, C. Spengler, “Grinding-and-Slicing Technique as an Advanced Technology for Silicon Wafer Slicing, ” Mach. Sci. Technol, Vol. 1, pp. 33-47, 1997.
46. U. Bismayer, E. Brinksmeier, B. Guttler, H. Seibt, C. Menz, “Measurement of Subsurface Damage in Silicon Wafers, ” Precision Engineering, Vol. 16, NO. 2, pp. 139-144, 1994.
47. H. K. Tonshoff, W. V. Schmieden, I. Inasaki, W. Konig, G. Spur, “Abrasive Machining of Silicon, ” Annals of CIRP, Vol. 39, NO. 2, pp. 621-630, 1990.
48. D. Echizenya, H. Sakamoto, K. Sasaki, “Effect of Mechanical Surface Damage on Silicon Wafer Strength, ” Procedia Engineering, Vol. 10, pp. 1440-1445, 2011.
49. T. Yi, L. Li, C. Kim, “Microscale Material Testing of Single Crystalline Silicon: Process Effects on Surface Morphology and Tensile Strength, ” Sensors & Actuators: A. Physical, Vol. 83, pp. 172-178, 2000.
50. N. McLellan, N. Fan, S. Liu, K. Lau, J. Wu, “Effects of Wafer Thinning Condition on the Roughness, Morphology and Fracture Strength of Silicon Die, ” Journal of Electronic Packaging, Vol. 126, pp. 110-114, 2004.
51. X. Li, T. Kasai, S. Nakao, T. Ando, M. Shikida, K. Sato, “Influence of Sub-micrometer Notches on the Fracture of Single Crystal Silicon Thin Films, ” Fatigue Fract Engng Mater Struct, Vol. 30, pp. 1172-1181, 2007.
52. M. George, C. Coupeau, J. Colin, J. Grilhe, “Atomic Force Microscopy Observations of Successive Damaging Mechanisms of Thin Films on Substrates Under Tensile Stress, ” Thin Solid Films, Vol. 429, pp. 267-272, 2003.
53. K. Munzer, K. Holderman, R. Schlosser, S. Sterk, “Thin Monocrystalline Silicon Solar Cells, ” IEEE Transactions on Electron Devices, Vol. 46, No. 10, pp. 2055-2061, 1999.
54. NSC-95-2221-E-002-015, Studies on Thinning Technique for SiliconWafers. 2006.
55. L. C. Zhang, N. Yasunaga, Advances in Abrasive Technology, World Scientific Publishing Co. Pte. Ltd, Singapore, pp. 33-42, 1997.
56. S. Zhang, D. Sun, Y. Q. Fu, H. J. Du, “Toughening of Hard Nanostructural Thin Films: a Critical Review, ” Surface & Coatings Technology, Vol. 198, pp. 2-8, 2005.
57. C. T. Huang, “Stress Relaxation of V-shaped Notch on Single Crystal Silicon Using Nanoholes, ” National Tsing Hua University Master thesis, 2009. (Advisor J. Yeh)
58. Y. K. Shao, “Effect of Nano Structure to Stress Concentration Caused by Chip Surface Defect, ” National Tsing Hua University Master thesis, 2013. (Advisor M. K. Yeh)
59. S. Kumar, X. Li, A. Haque, H. Gao, “Is Stress Concentration Relevant for Nanocrystalline Metals?, ” Nano Letters, Vol. 11, pp. 2510-2516, 2011.
60. C. R. Chiang, “Stress Concentration Factors of Edge-notched Orthotropic Plates, ” Journal of Strain Analysis, Vol. 33, No. 5, pp. 395-398, 1998.
61. M. Hendrix, S. Drews “Improvements in Yield by Eliminating Backgrind Defects and Providing Stress Relief with Wet Chemical Etching, ” 2004.
62. ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
63. R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th, Wiley, United States, 2001.
64. L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York, 1984.
65. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
66. ANSYS Release 12.1, ANSYS HELP.
67. K. Peng, J. Zhu, “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution, ” Electrochimica Acta, Vol. 49, pp. 2563-2568, 2004.
68. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, J. Zhu, “Fabrication of Single-Crystalline Silicon Nanoholes by Scratching a Silicon Surface with Catalytic Metal Particles, ” Advanced Functional Materials, Vol. 16, pp. 387-394, 2006.
69. K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, J. Zhu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays, ” Angewandte Chemie International Edition, Vol. 44, pp. 2737-2742, 2005.
70. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S. Lee, “Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanoholes in Aqueous Fluoride Solution, ” Chemistry A European Journal, Vol. 12, pp. 7942-7947, 2006.
71. K. Peng, A. Lu, R. Zhang, S. Lee, “ Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching, ” Advanced Functional Materials, Vol. 12, pp. 3026-3035, 2008.
72. C. Hsieh, J. Chyan, W. Hsu, J. Yeh, “Fabrication of Wafer-level Antireflective Structures in Optoelectronic Applications, ” Optical MEMS and Nanophotonics 2007 IEEE/LEOS International Conference, pp. 185-186, 2007.
73. C. N. Chen, “Strengthening of Single Crystal Silicon by Mimicking the Surface Nanostructures on Cicada's Wing, ” National Tsing Hua University Master thesis, 2008. (Advisor J. Yeh)
74. D. Broek, Elementary Engineering Fracture Mechanics, 4th, Springer, Berlin, 1982.
75. C. C. Liu, “Propagation Characteristics of Thickness-Through-Cracks in Irregular Stress Distribution Fields, ” National Cheng Kung University Master thesis, 2002. (Advisor Z. H. Lin)
76. W. Pilkey, Peterson’s Stress Concentration Factors:Wiley-Interscience, New York, 1997.
77. C. R. Chiang, “On Stress Cocentration Factors in Orthotropic Materials, ” Journal of the Chinese Institute of Engineers, Vol. 22, No. 3, pp. 301-305, 1999.
78. 劉晉奇,有限元素分析與ANSYS的工程應用,滄海,台中,2006。
79. R. C. Hibber, Statics and Mechanics of Materials, 6th, Pearson Education, United States, 2004.
80. ASTM E8/E8M - 11, “Standard Test Methods for Tension Testing of Metallic Materials, ” Annual Book of ASTM Standards, Vol. 3, 2013.
81. M. Okaji, “Absolute Thermal Expansion Measurements of Single-Crystal Silicon in the Range 300-1300 K with an Interferometric Dilatometer, ” International Journal of Thermophysics, Vol. 9, No. 6, pp. 1101-1109, 1988.
82. H. Watanabe, N. Yamada, M. Okaji, “Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K, ” International Journal of Thermophysics, Vol. 25, No. 1, pp. 221-236, 2004.
83. K. G. Lyon, G. L. Salinger, C. A. Swenson, “Linear Thermal Expansion Measurements on Silicon from 6 to 340 K, ” Journal of Applied Physics, Vol. 48, NO. 3, pp. 865-868, 1977.
84. R. B. Roberts, “Thermal Expansion Reference Data: Silicon 300-850 K, ” Journal of Applied Physics, Vol. 14, pp. 163-166, 1981.
85. J. S. Shah, M. E. Straumanis, “Thermal Expansion Behavior of Silicon at Low Temperatures, ” Solid State Communications, Vol. 10, pp. 159-162, 1972.
86. A. V. Mazur, M. M. Gasik, “Thermal Expansion of Silicon at Temperatures Up to 1100 ◦C, ” Journal of Materials Processing Technology, Vol. 209, pp. 723-727, 2009.
87. L. Maisse, “Thermal Expansion of Silicon, ” Journal of Applied Physics, Vol. 31, pp. 211, 1960.
88. ASTM E855 - 90, “Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading, ” Annual Book of ASTM Standards, Vol. 3, 2013.