簡易檢索 / 詳目顯示

研究生: 杜勇正
Yung-Cheng Tu
論文名稱: 網際網路上支援多媒體串流之封包排程與頻寬保留之研究
Scheduling and Bandwidth Reservation for Multimedia Streaming over the Internet
指導教授: 石維寬
Wei-Kuan Shih
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 117
中文關鍵詞: 多媒體串流服務品質封包排程頻寬保留
外文關鍵詞: Multimedia Streaming, Quality of Service, Packet Scheduling, Bandwidth Reservation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於網路提供者來說,在網際網路上對多媒體串流提供服務品質(Quality of
    Service, QoS)的保證一直是個很重要的議題。為了支援這種服務品質保證,我們
    在此提出了三種機制:(1)一個名為Jitter Control Frame-based Queueing (JCFQ)
    的Frame-based 封包排程機制,(2) 為了支援預先保留頻寬的功能而設計的多階
    段二階層頻寬保留機制,以及(3)一個名為 Bulk Scheduling Scheme (BSS) 的動
    態頻寬保留機制。其中,JCFQ 可以像其他其它 Generalized Processor Sharing
    (GPS)-based 的排程器一樣,提供良好的頻寬與封包延遲保證,但它卻只需要
    O(1) 的運算複雜度。多階段二階層頻寬保留機制則是對於未知使用時間的多媒
    體串流提供了一個較有效率且較有保障的頻寬保留方式。而BSS 是一個創新的
    動態頻寬分配架構,它可以根據網路串流的流量以及延遲要求,在中途每個路
    由上,動態的計算出合適的頻寬分配。跟傳統的per-packet 去計算要處理之封包
    的方式比較起來,BSS 有較低的 computational overhad,且不需要去修改封包
    的內容,這對於網路傳輸的保密也有很大的幫助。


    Providing QoS guarantees for multimedia streaming applications over the
    Internet is an important issue for network providers. To support these guarantees, we
    proposed three mechanisms, which contain a frame-based packet scheduling named
    as Jitter Control Frame-based Queueing (JCFQ), a multi-stage two-leg bandwidth
    reservation and admission control for advance reservations with uncertain service
    durations, and a dynamic bandwidth allocation called Bulk Scheduling Scheme
    (BSS). The JCFQ provides not only per-flow bandwidth and delay bound guarantees
    as other Generalized Processor Sharing (GPS) based schedulers but also achieves
    worst-case fair weighted fairness as Worst-case Fair Weighted Fair Queueing (WF2Q)
    with O(1) computational complexity in selecting a packet to serve assuming the
    number of flows is fixed. The multi-stage two-leg bandwidth reservation and
    admission control provides users a more predictive, affirmative service guarantees
    than conventional reservation schemes. The BSS is a novel framework that can
    guarantee the end-to-end delay bound for the flows with variable-bit-rate traffic by
    inserting some packets into flow traffic. Compared to traditional per-packet marking
    approaches, the BSS has lower computational overhead in intermediate nodes and
    does not change any information in the data packets, which allows end-to-end secure
    transmissions possible.

    Chapter 1 Introduction................................................................................................1 Chapter 2 Frame-based Packet Scheduling...............................................................4 2.1 Preliminaries ....................................................................................................4 2.2 Jitter Control Frame-based Queueing (JCFQ) .................................................8 2.3 Service Order Assignment .............................................................................16 2.4 Fairness Analysis ...........................................................................................20 2.4.1 Fairness Index .....................................................................................20 2.4.2 Normalized Worst-case Fair Index......................................................21 2.4.3 Normalized Average Fair Index ..........................................................23 2.5 Performance Evaluation.................................................................................26 2.6 Summary........................................................................................................35 Chapter 3 Advance Bandwidth Reservation and Admission Control...................37 3.1 Preliminaries ..................................................................................................37 3.2 Related Works ................................................................................................40 3.3 Multi-Stage Two-Leg Resource Reservation .................................................43 3.3.1 Leg-one: the Full Service Warranty Period.........................................46 3.3.2 Leg-two: the Minimum Service Warranty Period...............................46 3.3.3 Revising Uncertainty with New Data .................................................47 3.3.4 The Choice of Warranty Periods .........................................................49 3.4 The Admission Control and Link Capacity Management for New AR Requests and Service Extension Requests ....................................................................50 3.4.1 Admission Control for New AR Requests ..........................................51 3.4.2 Admission Control for Service Extension Requests...........................54 3.5 Performance Measures for AR Service..........................................................56 3.5.1 Advance Reservation Quality Indexes –ARC-index and ARB-index.57 3.5.2 Advance Reservation Cost ..................................................................59 3.6 Performance Evaluation.................................................................................60 3.6.1 Blocking Probability ...........................................................................60 3.6.2 ARC-index, ARB-index and Reservation Cost...................................61 3.6.3 Choice of the Full Service Warranty Period .......................................63 v 3.6.4 Submission Time of Service Extension ..............................................65 3.6.5 Capacity Reservation for Service Extension Requests .......................67 3.6.6 Unknown Distribution ........................................................................68 3.7 Summary........................................................................................................72 Chapter 4 Dynamic Bandwidth Allocation..............................................................74 4.1 Preliminary.....................................................................................................74 4.2 Related Works ................................................................................................78 4.2.1 Per-packet scheduling .........................................................................78 4.2.2 Nodal delay assignment problem........................................................79 4.3 Bulk Scheduling Scheme ...............................................................................80 4.3.1 TED packets and End-to-End delay....................................................82 4.3.2 BSS nodal Scheduling in intermediate nodes .....................................84 4.3.3 Per-bulk service rate estimation..........................................................86 4.3.4 Comparison of the three proposed nodal processing index estimations ............................................................................................................90 4.3.5 TED period and end-to-end delay bound assignment.........................91 4.4 Enhancements of Bulk Scheduling Scheme ..................................................94 4.4.1 Drop Missed Policy.............................................................................94 4.4.2 Feedback mechanism ..........................................................................95 4.5 Performance Evaluation.................................................................................99 4.5.1 Single-hop case .................................................................................100 4.5.2 Multi-hop case ..................................................................................103 4.5.3 Performance improvement resulting from the drop missed policy and feedback mechanism........................................................................106 4.5.4 Simulation with video traffic ............................................................107 4.6 Summary......................................................................................................109 Chapter 5 Conclusion .............................................................................................. 111 References................................................................................................................. 113

    [1] ATM Forum, “ATM User-Network interface (UNI) signaling specification
    version 4.1,” in ATM Forum Specification, 2002.
    [2] J. Bennett, and H. Zhang, “WF2Q: Worst-case fair weighted fair queueing,” in
    Proceedings of INFOCOM’96, pp. 120-128, Mar. 1996.
    [3] The Blockbusters web page. http://www.blockbuster.com.
    [4] R. Braden et al, “Resource ReSerVation Protocol (RSVP) – Version 1:
    Functional specification,” IETF RFC 2205.
    [5] F. Breiter, S. Kuhn, E. Robles and A. Schill, “The Usage of Advance Reservation
    Mechanisms in Distributed Multimedia Applications,” in Computer Networks
    and ISDN Systems, 30(16-18), Sept. 1998, pp. 1627-1635.
    [6] L.-O. Burchard, “On the Performance of Computer Networks with Advance
    Reservation Mechanisms,” in Proceeding of the 11th IEEE International
    Conference on Networks, September 2003.
    [7] L.-O. Burchard, “Analysis of Data Structures for Admission Control of Advance
    Reservation Requests,” in IEEE Transactions on Knowledge and Data
    Engineering, vol. 17, issue 3, pp. 413–424, Mar 2005.
    [8] R. Caputo, “Cisco Packetized Voice and Data Integration,” published by
    McGraw Hill, 2000.
    [9] R.-I, Chang, M. C. Chen, J.-M. Ho, and M.-T. Ko, ”An effective and efficient
    traffic smoothing scheme for delivery of online VBR media stream,” in
    Proceedings of INFOCOM'99, New York, pp. 447-454, March 1999.
    [10] T.M. Chen, S. S. Liu, and V. K. Samalam, “The available bit rate service for data
    in ATM networks,” in IEEE Communication Magazine 34(5), 56-71
    [11] D. Clark, S. Shenker, and L. Zhang, ”Supporting real-time applications in an
    integrated services packet network: Architecture and mechanism,” in
    Proceedings of ACM SIGCOMM’92, pp. 14-26, August 1992.
    11 4
    [12] M. Degermark, T. Kohler, S. Pink and O. Schelen, “Advance Reservations for
    Predictive Service,” in Proceedings of NOSSDAV’ 95, Durham, NC, April 1995.
    [13] L. Delgrossi and L. Berger, “Internet Stream Protocol Version 2 (ST2), protocol
    specification – version ST2+,” RFC 1819, Internet Engineering Task Force,
    August 1995.
    [14] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in
    wide-area networks,” in IEEE Journal on Selected Areas in Communications, vol.
    8, pp. 368-379, April 1990.
    [15] D. Ferrari, A. Gupta and G. Ventre, “Distributed Advance Reservation of
    Real-Time Connections,” in Proceedings of NOSSDAV'95, Durhum, USA,
    Springer LNCS 1018, April 1995.
    [16] S. Floyd, and V. Jacobson, “Link-sharing and resource management models for
    packet networks,” in IEEE/ACM Transactions Networking, vol. 3, issue 4, pp.
    365-386, August 1995.
    [17] M. W. Garrett and A. Fernandez, “MPEG-1 Vide Trace,” in Bellcore,
    ftp://thumper.bellcore.com/pub/vbr.video.trace/MPEG.data, 1992.
    [18] L. Georgiadis, R. Guerin, V. Peris, and K. N. Sivarajan, “Efficient network QoS
    provisioning based on per node traffic shaping,” in IEEE/ACM Transactions on
    Networking, vol. 4, pp. 482-501, August 1996.
    [19] S. J. Golestani, “A framing strategy for congestion management,” in IEEE
    Journal on Selected Areas in Communications, vol. 9, pp. 1064-1077, September
    1991.
    [20] S. J. Golestani, “Congestion-free communication in high-speed packet
    networks,” in IEEE Transactions on Communications, vol. 39, issue 12, pp.
    1802-1812, 1991.
    [21] S. Golestani, “A self-clocked fair queueing scheme for broadband applications,”
    in Proceedings of INFOCOM’94, pp. 636-646, April 1994.
    [22] A. G. Greenberg, R. Srikant, and W. Whitt, “Resource Sharing for Book-Ahead
    and Instantaneous-Quest Calls,” in IEEE/ACM Transactions on Networking, vol.
    1, issue 7, April 1999.
    11 5
    [23] R. A. Guerin and A. Orda, “Networks with Advance Reservations: The Routing
    Perspective,” in Proceedings of INFOCOM 2000, Israel, March 2000.
    [24] ITU-T, “Traffic control and congestion control in B-ISDN,” ITU-T Rec. I.371,
    1995.
    [25] C. R. Kalmanek, H. Kanakia, and S. Keshav, “Rate Controlled servers for very
    high-speed networks,” in Proceedings of IEEE GLOBECOM’90, San Diego,
    California, December 1990.
    [26] M. Karsten, N. Berier, L. Wolf and R. Steinmetz, “A Policy-Based Service
    Specification for Resource Reservation in Advance,” in Proceedings of ICCC'99,
    Tokyo, Japan, 1999.
    [27] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-robin cell
    multiplexing in a general-purpose ATM switch chip,” in IEEE Journal on
    Selected Areas in Communications, vol. 9, pp. 1265-79, October 1991.
    [28] S. Kent and R. Atkinson, “Security architecture for the Internet protocol,” IETF
    RFC 2401.
    [29] G. Kesidis, J. Walrand and C. S. Chang, “Effective bandwidths for multiclass
    Markov fluids and other ATM sources,” in IEEE/ACM Transactions on
    Networking, Issue 1, pp. 424-428, 1993.
    [30] R. J. La and V. Anantharam, “Utility-based rate control in the internet for elastic
    traffic,” in IEEE/ACM Transactions on Networking, vol. 10, issue 2, pp. 272–286,
    Apr. 2002.
    [31] S. Low, “Equilibrium bandwidth and buffer allocations for elastic traffics,” in
    IEEE/ACM Transaction on Networkings, vol. 8, issue 3, pp. 373–383, Jun. 2000.
    [32] Y. Ohba, “QLWFQ: A queue length based weighted fair queueing algorithm in
    ATM Networks,” in Proceedings of INFOCOM '97, pp. 566-575, 1997.
    [33] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to
    flow control: The single-node case,” in IEEE/ACM Transactions on Networking,
    vol. 1, pp. 344-357. 1993.
    11 6
    [34] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to
    flow control in integrated services networks: The multiple node case,” in
    IEEE/ACM Transactions on Networking, vol. 2, pp. 137-150, 1994.
    [35] W. Reinhardt, “Advance Reservation of Network Resources for Multimedia
    Applications,” in Proceedings of 2nd Intl. Workshop on Advanced Teleservices
    and High-Speed Communication Architectures (IWACA’94), Heidelberg,
    Germany, Sep. 1994.
    [36] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi, “Hardware-Efficient Fair
    Queueing Architectures for High-Speed Networks,” in Proceedings of
    INFCOM’96, pp. 638-646.
    [37] F. Sallabi and A. Karmouch, “Resource Reservation Admission Control
    Algorithm with User Interactions,” in Proceeding of the IEEE GLOBECOM’99,
    vol. 4, pp. 2086-2090, Dec. 1999.
    [38] A. Schill, F. Breiter, and S. Kahn, “Design and Evaluation of an Advance
    Resource Reservation Protocol on top of RSVP,” in Proceedings of IFIP
    Broadband’98, Stuttgart, Germany, April 1998.
    [39] P. Seeling, M. Reisslein and B. Kulapala, “Network Performance Evaluation
    Using Frame Size and Quality Traces of Single-Layer and Two-Layer Video: A
    Tutorial,” in IEEE Communications Surveys and Tutorials, vol. 6, no. 2, pp.
    58-78, 2004. (Available: http://trace.eas.asu.edu)
    [40] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round
    robin,” in Proceedings of SIGCOMM’95, pp. 231-242, September 1995.
    [41] V. Stanisic and M. Devetsikiotis, “Dynamic Utility-based Bandwidth Allocation
    Policies: The Case of Overloaded Network,” in Proceeding of the 2004 IEEE
    International Conference on Communications, Jun. 2004.
    [42] D. Stiliadis and A. Varma, “Design and analysis of frame-based fair queueing: A
    new traffic scheduling algorithm for packet-switched networks,” in Proceedings
    of ACM SIGMETRICS, pp. 104-115, 1996.
    [43] I. Stoica et al. “Per hop behaviors based on dynamic packet states,” Internet Draft,
    1999. (Available: http://www.cs.cmu.edu/~istoica/DPS/draft.txt)
    11 7
    [44] UCB/LBNL/VINT, “Network Simulator-ns (version 2),” available in
    http://www-mash.cs.berkeley.edu/ns/.
    [45] A. Vagish, T. Znati and R. Melhem, “Per-node delay assignment strategies for
    real-time high speed network,” in Proceedings of IEEE GLOBECOM’99, Rio de
    Janeiro, Brazil, pp. 1323-1327, December 1999..
    [46] D. Wischik and A. G. Greenberg, “Admission Control for Booking Ahead Shared
    Resources,” in Proceedings of INFOCOM’98, San Francisco, CA, April 1998.
    [47] G. G. Xie and S. S. Lam, “Real-time block transfer under a link-sharing
    hierarchy,” in IEEE/ACM Transactions on Networking, vol. 6, issue 1, pp. 30-41,
    1998.
    [48] H. Zhang and D. Ferrari, “Rate-controlled static-priority queueing,” in
    Proceedings of IEEE INFOCOM’93, pp. 227-236, March 1993.
    [49] L. Zhang, “VirtualClock: A new traffic control algorithm for packet switching
    networks,” in ACM Transactions on Computer System, vol. 9, pp. 24-110, May
    1991.
    [50] K. Zhu, Y. Zhuang, and Y. Viniotis, “Achieving end-to-end delay bounds by
    EDF Scheduling without traffic Shaping,” in Proceedings of IEEE INFOCOM
    2001, pp. 1493-1501, April 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE