簡易檢索 / 詳目顯示

研究生: 郭昆樺
Kun-Hua Kuo
論文名稱: 氧化鋅奈米柱之成核成長及其發光特性研究
Nucleation and Growth of ZnO Nanorods and the Optical Properties
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 115
中文關鍵詞: 氧化鋅奈米線奈米柱化學氣相沉積碳熱還原氣液固法氧化鋁奈米球微影週期陣列光激發光紫外光綠光
外文關鍵詞: ZnO, nanowires, nanorods, CVD, carbothermal reduction, VLS, sapphire, NSL, periodic arrays, PL, UV emission, green emission
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以管狀高溫爐利用化學氣相沉積製程來合成氧化鋅奈米線及奈米柱。氧化鋅奈米線經由氣液固(vapor-liquid-solid, VLS)之機制,利用石墨粉末在高溫下將氧化鋅粉末還原出鋅蒸氣,蒸氣熔入金奈米顆粒觸媒後,再從基板上長出氧化鋅奈米線。不同晶面的矽基板與氧化鋁基板被選用來控制氧化鋅奈米柱的成長方向。
      其次,利用奈米球微影技術在基板上製作金奈米顆粒陣列,藉此可定義出氧化鋅奈米柱的成長位置,並達到成長奈米柱陣列的目標。以奈米球微影技術製備出來的金奈米顆粒大小約在50-100 nm。經由氧化鋅奈米柱成核成長的顯微觀察,發現金顆粒觸媒在成核階段中因合金薄膜的形成而改變了位置。
    在材料分析方面,本研究利用能量散佈光譜儀(energy dispersive X-ray spectrometer, EDX)來分析氧化鋅奈米線以及製程初期的產物,並利用X光繞射儀和高解析度穿透式電子顯微鏡來鑑定奈米線的成長方向。
      在不同成長溫度與成長時間下所製備出的氧化鋅奈米線擁有不同的密度和長度。這些奈米線的光激發光譜顯示,紫外光的發光強度隨著氧化線的密度增加而增加,而另一方面,綠光的發光強度也隨著氧化線長度的增加而大幅提升。


    ZnO nanowires and nanorods were synthesized via a CVD process in a horizontal tube furnace. This process was initiated from the carbothermal reduction of ZnO by graphite powder. Then ZnO nanowires were grown on substrates via the vapor-liquid-solid (VLS) process. Both (100) silicon and a-plane sapphire were used as a substrate to control the growth orientation of ZnO nanorods.
    Nanosphere lithography (NSL) and the VLS growth process of ZnO nanorods were combined to fabricate periodic arrays of ZnO nanorod on the substrate. Periodic array of Au particles with a size of 50-100 nm were deposited on the substrate by NSL technique. ZnO nanorods were then grown on the arrays via the VLS process. Microscopic observation on the nucleation and growth of ZnO nanorods grown from the a-plane sapphire substrate was made. Distortion of Au particle arrays and formation of alloy thin film were noticed during the nucleation stage. The compositions of the alloy thin film and the as-prepared ZnO nanowires were identified by the EDX spectra. The crystallinity and growth orientation of the ZnO nanowires were characterized by X-ray diffraction and HRTEM analysis.
    Photoluminescence (PL) spectra of ZnO nanowires grown at different temperatures were obtained. It reveals that the intensity of UV emission of the specimens largely depends on the density of nanorods. Also, it is demonstrated that the intensity of green emission is significantly influenced by the length of nanowires, presumably related to the defect density in the nanowires.

    摘要 Abstract 誌謝 Table of Contents Chapter I Introduction Chpater II Literature Review 2-1 Nanolithography 2-1-1 Electron Beam Lithography (EBL) 2-1-2 X-ray Interference Lithography (XIL) 2-1-3 AFM Lithography 2-1-4 Nanosphere Lithography (NSL) 2-2 Nanosphere Lithography 2-2-1 Substrate Cleaning and Modification A. Removal of the organic contaminants B. Removal of the native oxide C. Removal of particles/ growth of hydrophilic oxide 2-2-2 Mask Fabrication A. Simple evaporation and spin coating B. Dip coating C. Chemical modification 2-2-3 Physical Deposition A. Direct deposition B. Angle-resolved deposition 2-3 Nanowire Systems 2-3-1 Materials A. Silicon and germanium nanowires B. Compound semiconductor nanowires C. Oxide nanowires 2-3-2 Synthesis Techniques for ZnO Nanowires A. Thermal evaporation B. Chemical vapor deposition (CVD) C. Metalorganic vapor phase epitaxy (MOVPE) D. Pulse laser deposition (PLD) 2-3-3 Growth Mechanisms A. Vapor-Liquid-Solid (VLS) mechanism B. Oxide-assisted growth (OAG) mechanism C. Template growth mechanism 2-3-4 Periodic Nanorod Arrays A. Carbon nanotube arrays B. InP nanorod arrays C. ZnO nanorod arrays 2-4 Synthesis of ZnO Nanowires 2-4-1 Carbothermal Reduction of ZnO A. Thermodynamics B. Experimental 2-4-2 Substrate Effect on Growth Orientation 2-5 Photoluminescence (PL) 2-5-1 Diameter Dependence 2-5-2 Detection Angle Dependence 2-5-3 Influence of Gas Absorption 2-5-4 Influence of Doping 2-6 Applications of ZnO Nanostructures 2-6-1 Ultraviolet Nanolasers 2-6-2 Photodetectors and Optical Switches 2-6-3 Gas Sensors 2-6-4 Hydrogen Storage Chapter III Experimental Procedures 3-1 Nanosphere Lithography (NSL) A. Substrate treatment B. Preparation of polystyrene bead latex C. Preparation of mask D. Deposition of gold E. Removal of polystyrene beads 3-2 Synthesis of ZnO Nanowires A. Experimental B. Process parameters 3-3 Analysis and Characterization Chapter IV Results and Discussion 4-1 Growth of ZnO Nanowires on Si Substrate 4-1-1 Optimum Growth Temperature 4-1-2 Composition Analysis 4-1-3 Crystallinity and Growth Orientation 4-2 Growth of Patterned ZnO Nanorods on Si Substrate 4-3 Substrate Effect on the Growth Orientation 4-4 Observation of the Growth of ZnO Nanorods 4-5 PL of the ZnO Nanorods 4-5-1 Growth Temperature Dependence of PL 4-5-2 Density Dependence of PL 4-5-3 Length Dependence of PL 4-6 Optimum Experimental Conditions 4-6-1 Growth of ZnO Nanorod from Au Film 4-6-2 Preparation of Bead Mask 4-6-3 Synthesis of Au Particle Array 4-6-4 Growth of ZnO Nanorod fom Au Particle Array Chapter V Conclusions Chapter VI Suggested Future Work Approaches for Suggested Future Work A. Optimum Growth Condition of Patterned ZnO Nanorod B. Further Investigation on the Length Effect C. Photo-detecting and Gas-sensing Measurements References

    1. X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004).
    2. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
    3. P. Yang, Science 292, 1897 (2001).
    4. Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, Appl. Phys. Lett. 84, 4556 (2004).
    5. Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett. 84, 3654 (2004).
    6. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).
    7. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
    8. B. D. Yao, Y. F. Chan, and N. Yang, Appl. Phys. Lett. 81, 757 (2002).
    9. J. J. Wu and S. C. Liu, Adv. Mater. 14, 215 (2002).
    10. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002).
    11. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004).
    12. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys. 79, 7983 (1996).
    13. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001).
    14. H. T. Ng, Appl. Phys. Lett. 82, 2023 (2003).
    15. Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, Appl. Phys. Lett. 84, 124 (2004).
    16. S. Y. Bae, H. W. Seo, and J. Park, J. Phys. Chem. B 108, 5206 (2004).
    17. Z. F. Ren, Appl. Phys. Lett. 82, 460 (2003).
    18. T. Mårtensson, M. Borgstrom, W. Seifert, B. J. Ohlsson, and L. Samuelson, Nanotech. 14, 1255 (2003).
    19. M. Kamp, M. Emmerling, S. Kuhn, and A. Forchel, J. Vac. Sci. Technol. B 17, 86 (1999).
    20. L. J. Heyderman, Appl. Phys. Lett. 85, 4989 (2004).
    21. S. Juhl and S. F. Lyuksyutov, Appl. Phys. Lett. 85, 3836 (2004).
    22. J. Rybczynski, U. Ebels, and M. Giersig, Colloids Surf. A: Physicochem. Eng. 219, 1 (2003).
    23. W. Kern, Handbook of Semiconductor Wafer Cleaning Technology -Science, Technology, and Application, Noyes Publications, Park Ridge, N. J. (1993).
    24. D. I. Kim, H. S. Ahn and D. H. Choi, Appl. Phys. Lett. 84, 1919 (2004).
    25. R. Micheletto, H. Fukuda, and M. Ohtsu, Langmuir 11, 3333 (1995).
    26. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
    27. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, J. Phys. Chem. B 103, 3854 (1999).
    28. M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, Appl. Phys. A 63, 617 (1996).
    29. A. S. Dimitrov and K. Nagayama, Langmuir 12, 1303 (1996).
    30. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
    31. M. K. Sunkara, Appl. Phys. Lett. 79, 1546 (2001).
    32. Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000).
    33. C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 86, 213108 (2005).
    34. S. K. Lee, Phys. Stat. Sol. (b) 241. 2775 (2004).
    35. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 336, 53 (2001).
    36. Y. Lei, Appl. Phys. Lett. 78, 1125 (2001).
    37. Y. Chen, J. Li, Y. Han, X. Yang, and J. Dai, J. Cryst. Growth 245, 163 (2002).
    38. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237 (1999).
    39. N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 73, 3902 (1998).
    40. L. D. Zhang, Adv. Mater. 13, 1238 (2001).
    41. J. Jie, G. Wang, Q. Wang, Y. Chen, X. Han, X. Wang, and J. G. Hou, J. Phys. Chem. B 108, 11976 (2004).
    42. Y. Zhang and H. Dai, Appl. Phys. Lett. 77, 3015 (2000).
    43. Y. K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes, Cambridge University Press, New York (1985).
    44. H. K. Chen, Scand. J. Metall. 30, 292 (2001).
    45. H. K. Chen, J. Mater. Sci. Lett. 19, 1297 (2000).
    46. J. B. Baxter and E. S. Aydil, J. Cryst. Growth 274, 407 (2005).
    47. P. Yang, Adv. Funct. Mater. 12, 323 (2002).
    48. J. Song, X. Wang, E. Riedo, and Z. L. Wang, J. Phys. Chem. B 109, 9869 (2005).
    49. H. J. Fan, Superlattice Microstruct. 36, 95 (2004).
    50. Y. R. Lin, Cryst. Growth & Design 5, 579 (2005).
    51. Y. K. Tseng, Adv. Funct. Mater. 13, 811 (2003).
    52. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
    53. H. Okamoto and T. B. Massalski, Phase diagrams of binary gold alloys, ASM International, Metals Park, Ohio (1987)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE