研究生: |
張泰嘉 Chang, Tai-Chia |
---|---|
論文名稱: |
利用雙模索引調變增進毫米波光載無線電行動前傳系統中的索引調變非正交多重接取的性能 NOMA-IM performance enhancement in MMW-RoF mobile fronthaul systems by using dual-mode index modulation |
指導教授: |
馮開明
Feng, Kai-Ming |
口試委員: |
顏志恆
Yan, Jhih-Heng 彭朋群 Peng, Peng-Chun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 非正交多重接取 、索引調變 、雙模索引調變 、光載無線電 、行動前傳 、下傳鏈路 |
外文關鍵詞: | OFDM, NOMA, DMIM, RoF, mobile fronthaul, down link |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前的行動通訊發展的越來越快速,頻譜效益的提升是目前備受關注的一項議題,由於當今的頻譜資源非常珍貴,為了更好的使用目前較為充裕的頻譜,使用毫米波段(Millimeter Wave, MMW)為第五代通訊中不可或缺的條件。但毫米波段的無線電訊號因為其物理特性,在空氣中的功率衰減十分迅速,因此會使其傳輸距離受到限制,而第五代行動通訊為了使用毫米波的頻段,會使用相較於第四代行動通訊更多的小型基地台,也就是用更小型、更密集的基地台來彌補毫米波段其傳輸距離較短的特性。而這樣小型的基地台為了同時支持更多用戶傳輸數據,使用非正交多重接取(NOMA)能支援的用戶數量 比傳統的分時多工(TDMA)、分頻多工(FDMA)、正交分頻多工(OFDM)、…等還要更具優勢,因此NOMA被視為第五代行動通訊中一項具有潛力的技術。
在傳統用功率作為區別不同用戶的NOMA系統中,會根據用戶的距離來傳送一組具有距離基地台較近和距離基地台較遠的用戶的訊號,而在這樣的安排中,由於離基地台較遠的用戶其訊號受通道的干擾程度較嚴重,為了減少距離較遠的用戶的訊號干擾,在Power domain NOMA的系統中引入了索引調變(Index modulation , IM)的概念,能夠有效的減少大功率訊號解調的錯誤率,但經過IM之後的NOMA架構,在頻譜效率和小功率訊號的錯誤率會做出一定的犧牲。
本篇論文引入了多模索引調變(Dual-mode index modulation)能有效的解決NOMA在頻譜效率上的不足,並且本篇論文提出circular DMIM的星座圖配置方式,能更有效的利用頻譜資源,並且相較傳統NOMA IM有著更良好的延遲表現及更低的複雜度。
Index modulation and orthogonal frequency division multiplexing (OFDM) has become a promising technique in the future , They can conveying extra information for specific activation of the frequency domain subcarriers, therefore improving the achievable throughput at a given bit error ratio (BER) performance. In this paper, Non-orthogonal-multiple assess (NOMA) combine dual-mode OFDM technique is proposed, which is combined with index modulation and enhances the attainable throughput of conventional index-modulation based OFDM. In particular, the subcarriers are divided into several subblocks, and in each subblock, all the subcarriers are partitioned into two groups, modulated by a pair of distinguishable modem-mode constellations, respectively. However, the information bits are conveyed the classic constellation symbols, and implicitly by the concrete activated subcarrier indices, representing the subcarriers’ constellation mode. At the receiver, a maximum likelihood (ML) detector and a reduced-complexity near optimal log-likelihood ratio-based detector are invoked for demodulation. The minimum distance between the different legitimate realizations of the OFDM subblocks is calculated for characterizing the performance of DM-OFDM. Then, the associated theoretical analysis based on the pairwise error probability is carried out for estimating the BER of DM-OFDM. Furthermore, the simulation results confirm that at a given throughput, DM-OFDM achieves a considerably better BER performance than other OFDM systems using index modulation, while imposing the same or lower computational complexity. The results also demonstrate that the performance of the proposed low-complexity detector is indistinguishable from that of the ML detector, provided that the system’s signal to noise ratio is sufficiently high.
[1] B. Anass, "IMT-2020 Radio Interface Standardization Trends in ITU-R", NTT DOCOMO Technical Journal., vol. 19, no. 3, pp. 55-63, Jan. 2018.”
[2] Dahmen-Lhuissier, S. (n.d.). Mobile Technologies - 5g, 5g Specs: Future Technology. Retrieved from https://www.etsi.org/technologies/5g
[3] Y. Chen et al., "Toward the Standardization of Non-Orthogonal Multiple Access for Next Generation Wireless Networks," in IEEE Communications Magazine, vol. 56, no. 3, pp. 19-27, March 2018, doi: 10.1109/MCOM.2018.1700845.
[4] B. Anass, "An overview of non-orthogonal multiple access", ZTE Commun., vol. 15, no. s1, pp. 1-30, Jun. 2017.”
[5] S. Shen, Y. Chen, Q. Zhou and G. Chang, "Demonstration of Pattern Division Multiple Access with Message Passing Algorithm in MMW-RoF Systems," 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2020, pp. 1-3.
[6] Y. Tian, K. Lee, C. Lim and A. Nirmalathas, "Demonstration of Non-Orthogonal Multiple Access Scheme using Multilevel Coding without Successive Interference Cancellation with 60 GHz Radio-over-Fiber Fronthaul," 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, 2018, pp. 1-3.
[7] C. Lim, Y. Tian, A. Nirmalathas and K. Lee, "Advanced Techniques for 60 GHz Fronthaul Links," 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2019, pp. 1-3.
[8] S. Coleri, M. Ergen, A. Puri and A. Bahai, "Channel estimation techniques based on pilot arrangement in OFDM systems," in IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 223-229, Sept. 2002, doi: 10.1109/TBC.2002.804034.
[9] J. Zyren and W. McCoy. Overview of the 3GPP Long Term Evolution Physical Layer, Online available, July 2007.
[10] C. Lim, A. Nirmalathas, Yizhuo Yang, D. Novak and R. Waterhouse, "Radio-over-fiber systems," 2009 Asia Communications and Photonics conference and Exhibition (ACP), Shanghai, 2009, pp. 1-10.
[11] C. Lim, Y. Yang, and A. Nirmalathas, "Transport schemes for fiber-wireless technology: Transmission performance and energy efficiency," in Photonics, 2014, vol. 1, no. 2, pp. 67-82: Multidisciplinary Digital Publishing Institute.
[12] E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao and H. Haas, "Index Modulation Techniques for Next-Generation Wireless Networks," in IEEE Access, vol. 5, pp. 16693-16746, 2017, doi: 10.1109/ACCESS.2017.2737528.
[13] J. Zyren and W. McCoy. Overview of the 3GPP Long Term Evolution Physical Layer, Online available, July 2007.
[14] E. Basar, "Index modulation techniques for 5G wireless networks," in IEEE Communications Magazine, vol. 54, no. 7, pp. 168-175, July 2016, doi: 10.1109/MCOM.2016.7509396.
[15] E. Başar, Ü. Aygölü, E. Panayırcı and H. V. Poor, "Orthogonal Frequency Division Multiplexing With Index Modulation," in IEEE Transactions on Signal Processing, vol. 61, no. 22, pp. 5536-5549, Nov.15, 2013, doi: 10.1109/TSP.2013.2279771.
[16] T. Mao, Z. Wang, Q. Wang, S. Chen and L. Hanzo, "Dual-Mode Index Modulation Aided OFDM," in IEEE Access, vol. 5, pp. 50-60, 2017, doi: 10.1109/ACCESS.2016.2601648.
[17] Wikipedia, Error function Retrieved from: https:// en.wikipedia.org/wiki/Error_function.