研究生: |
張育慈 Chang, Yu-Tzu |
---|---|
論文名稱: |
金屬/銅氧化物超導體之贗能隙相接面的安德烈夫反射能譜 Andreev Reflection Spectroscopy for Metal/Pseudo-gap Phase of Cuprate Superconductor Junctions |
指導教授: |
牟中瑜
Mou, Chung-Yu |
口試委員: |
張明哲
Chang, Ming-Che 仲崇厚 CHUNG, Chung-Hou |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 高溫電洞摻雜超導體 、d波超導體 、穿隧效應 、安德烈夫反射 、贗能隙 、配對密度波 |
外文關鍵詞: | high Tc hole-doped superconductors, d-wave superconductors, tunneling spectroscopy, Andreev refection, pseudo-gap, pair density wave |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高溫銅氧化物是準二維材料,當材料被電洞摻雜時可以觀察到許多新現象。在本論文中,我們重點研究了低摻雜區域中高溫銅氧化物的穿隧能譜。我們首先分析了高溫銅氧化物的穿隧能譜,在緊束縛極限中具有均勻的 d 波配對對稱性。通過在緊束縛極限中使用 BTK 公式,我們計算了普通金屬 -(110)方向上高溫銅氧化物接面的穿隧能譜,並驗證了零偏壓電導峰值出現在能譜中。我們接下來推廣 BTK 公式來研究當高溫銅氧化物處於贗能隙相時的穿隧能譜。贗能隙相由具有 d 波對稱性的配對密度波 (PDW) 態建模,並且有序波向量在 x 方向或 y 方向。我們發現與來自 PDW 態的 Andreev 反射相關的穿隧能譜表現出幾個重要特徵,在微分電導曲線的特定電壓處具有峰值或階躍。這些特徵是穿隧實驗中 PDW 態的重要特徵。
The high-Tc cuprates are quasi-two dimensional materials with many novel phenomena observed when the materials are hole-doped. In this thesis, we focus on the tunneling spectrum of high-Tc cuprates in the underdoped region. We first analyze the tunneling spectrum for high Tc cuprates with a uniform d-wave pairing symmetry in tight-binding limit. By using the BTK formalism in the tight-binding limit, we compute the tunneling spectrum for the junction of normal metal - high Tc cuprates in the (110) direction and verify that a zero-bias-conductance-peak (ZBCP) emerges in the spectrum. We next generalize the BTK formalism to investigate the tunneling spectrum when the high-Tc cuprates are in the pseudo-gap phase. The pseudo-gap phase is modeled by the pair density wave (PDW) state with d-wave symmetry and the ordering wavevector being either in x direction or y direction. We find that the tunneling spectrum that is associated with the Andreev reflections from the PDW state exhibit several important features with either peaks or steps at specific voltages in the differential conductance curve.
These features serve as important signatures for the PDW state in tunneling experiments.
[1] Daniel F. Agterberg, J.C. Sé amus Davis, Stephen D. Edkins, Eduardo Frad-
kin, Dale J. Van Harlingen, Steven A. Kivelson, Patrick A. Lee, Leo Radzi-
hovsky, John M. Tranquada, and Yuxuan Wang. The physics of pair-density
waves: Cuprate superconductors and beyond. Annual Review of Condensed Mat-
ter Physics, 11(1):231–270, mar 2020.
[2] Yasuhiro Asano. Andreev Reflection in Superconducting Junctions. Springer,
2021.
[3] G. E. Blonder, M. Tinkham, and T. M. Klapwijk. Transition from metallic to
tunneling regimes in superconducting microconstrictions: Excess current, charge
imbalance, and supercurrent conversion. Phys. Rev. B, 25:4515–4532, Apr 1982.
[4] J. C. Campuzano, H. Ding, M. R. Norman, M. Randeira, A. F. Bellman, T. Yokoya,
T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki. Direct ob-
servation of particle-hole mixing in the superconducting state by angle-resolved
photoemission. Phys. Rev. B, 53:R14737–R14740, Jun 1996.
[5] Piers Coleman. Introduction to Many-Body Physics. Cambridge University Press,
2015.
[6] Zhehao Dai, Ya-Hui Zhang, T. Senthil, and Patrick A. Lee. Pair-density waves,
charge-density waves, and vortices in high-Tc cuprates. Phys. Rev. B, 97:174511,
May 2018.
[7] Øystein Fischer, Martin Kugler, Ivan Maggio-Aprile, Christophe Berthod, and
Christoph Renner. Scanning tunneling spectroscopy of high-temperature super-
conductors. Rev. Mod. Phys., 79:353–419, Mar 2007.
41
[8] He Rui-Hua Tanaka Kiyohisa Testaud Jean-Pierre Meevasana Worawat Moore Rob
G. Lu Donghui Yao Hong Yoshida Yoshiyuki Eisaki Hiroshi Devereaux Thomas
P. Hussain Zahid Shen Zhi-Xun Hashimoto, Makoto. Particle–hole symmetry
breaking in the pseudogap state of bi2201. Nature Physics, 6:414–418, 2010.
[9] Rui-Hua He, M. Hashimoto, H. Karapetyan, J. D. Koralek, J. P. Hinton, J. P.
Testaud, V. Nathan, Y. Yoshida, Hong Yao, K. Tanaka, W. Meevasana, R. G.
Moore, D. H. Lu, S.-K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T. P. Devereaux,
S. A. Kivelson, J. Orenstein, A. Kapitulnik, and Z.-X. Shen. From a single-band
metal to a high-temperature superconductor via two thermal phase transitions.
Science, 331(6024):1579–1583, 2011.
[10] Satoshi Kashiwaya, Yukio Tanaka, Masao Koyanagi, and Koji Kajimura. Theory
for tunneling spectroscopy of anisotropic superconductors. Phys. Rev. B, 53:2667–
2676, Feb 1996.
[11] Patrick A. Lee. Amperean pairing and the pseudogap phase of cuprate supercon-
ductors. Phys. Rev. X, 4:031017, Jul 2014.
[12] Jian-Xin Li, Chung-Yu Mou, and T. K. Lee. Consistent picture for resonance-
neutron-peak and angle-resolved photoemission spectra in high-Tc superconduc-
tors. Phys. Rev. B, 62:640–643, Jul 2000.
[13] Yasunari Tanuma, Yukio Tanaka, Masao Ogata, and Satoshi Kashiwaya. Theory
of local density of states of dx2−y2 -wave superconducting state near the surfaces of
the t-J model. Journal of the Physical Society of Japan, 67(4):1118–1121, 1998.
[14] Menke U. Ubbens and Patrick A. Lee. Flux phases in the t-j model. Phys. Rev. B,
46:8434–8439, Oct 1992.
[15] I M Vishik, W S Lee, R-H He, M Hashimoto, Z Hussain, T P Devereaux, and Z-X
Shen. ARPES studies of cuprate fermiology: superconductivity, pseudogap and
quasiparticle dynamics. New Journal of Physics, 12(10):105008, oct 2010.
[16] Ching-Long Wu, Chung-Yu Mou, and Darwin Chang. Effects of spin fluctuations
on the tunneling spectroscopy in high-Tc superconductors. Phys. Rev. B, 63:172503,
Apr 2001.
42
[17] Shin-Tza Wu and Chung-Yu Mou. Zero-bias conductance peak in tunneling spec-
troscopy of hybrid superconductor junctions. Phys. Rev. B, 67:024503, Jan 2003.
[18] Tao Xiang and Congjun Wu. D-wave Superconductivity. Cambridge University
Press, 2022.