研究生: |
洪立秉修 Hong, Ping-Hsiu |
---|---|
論文名稱: |
用於環境感測集成之溫濕壓力感測晶片 Monolithic Integration of CMOS Humidity and Pressure/Temperature Sensor for Environment Sensing Hub |
指導教授: |
方維倫
Fang, Wei-Leun 陳榮順 Chen, Rong-Shun |
口試委員: |
蘇旺申
Su, Wang-Shen 李昇憲 Li, Sheng-Shian |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 環境感測器 、電容式濕度感測器 、熱阻式溫度感測器 、電容式壓力感測器 、聚酰亞氨 、單晶整合 |
外文關鍵詞: | CMOS-MEMS, Environment sensor, Capacitive type humidity sensor, Resistive type temperature sensor, Capacitive pressue sensor, Monolithic integration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過TSMC所提供之0.18um 1P6M之CMOS平台,來製作一單晶整合之環境感測晶片,此晶片含有濕度、溫度、氣壓三種不同之感測單元,本研究以濕度感測器為出發點,從結構下手進行反應速率以及感測靈敏度的改善進而提出兩種設計,並且透過CMOS平台的優點與其他感測器進行整合,此整合製程的最大宗旨在於能夠設計出一套能夠同時完成三種元件的設計流程,並且各元件的製作過程中,不會因為製程上的衝突而導致元件之間互相干擾,值得注意的是,由於溫度感測元件的體積較小以及設計較為直觀,將會利用CMOS製程中的多層金屬堆疊,直接進行垂直整合於其中一種濕度計的元件內。
元件經過設計好之製程流程後,對所有元件進行訊號上的分開量測,本次所提出的各種設計皆能有平均之上的訊號表現,證實了利用CMOS平台來達成單晶整合的可行性。
This research presents a monolithically integrated environment sensing hub utilizing the TSMC CMOS platform. This study first focuses on the structure design of humidity sensors, with the intention of improving the sensors’ response time and sensitivity, then in order to fully utilize the CMOS platform, a pressure sensor and a temperature detector are integrated monolithically on the same chip, the core concept of this research is to fabricate all four sensors at once, without the fabrication process inteferring each other.
Experimental measurements will be operated seperately once all the fabrication processes are completed, experiment results show the performance of each device are all above average, proving the feasibility of monolithic integration upon the CMOS platform.
[1] P. Wiederhold, "The Principles of Chilled Mirror Hygrometry," Sensors Magazine, 17, pp. 46-51, 2000
[2] D. K. Roveti, "Choosing a Humidity Sensor: A Review of Three Technologies," The Journal of Applied Sensing Technology, 18, pp. 54-58, 2001
[3] M. Kimura, “Absolute-humidity sensing independent of the ambient temperature”, Sensors and Actuators A: Physical, 55, pp. 7-11, 1996
[4] X. Le, H. Ding, J. Pang, Y. Wang and J. Xie, "A humidity sensor with high sensitivity and low temperature coefficient of frequency based on aln surface acoustic wave and graphene oxide sensing layer," 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 210-213, 2017
[5] S. M. Balashov, O. V. Balachova, A. V. U. Braga, M. C. Q. Bazetto and A. P. Filho, "The optimized SAW humidity sensor with nanofilms of graphene oxide," IEEE SENSORS, pp. 1-4, 2013
[6] J. Fraden, “Humidity and Moisture Sensors. In: Handbook of Modern Sensors,” 5th ed., 2016
[7] Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid, and Y. Wei, “Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers,” Journal of the American Chemical Society, pp. 5036-5037, 2008
[8] C. L. Dai, M. C. Liu, F. S. Chen, C. C. Wu, and M. W. Chang, “A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique,” Sensors and Actuators B: Chemical, 120, pp. 896-901, 2007
[9] P. G. Su, C. J. Ho, Y. L. Sun, and I. C. Chen, “A micromachined resistive-type humidity sensor with a composite material as sensitive film,” Sensors and Actuators B: Chemical, 113, pp. 837-842, 2006
[10] C. D. Feng, S. L. Sun, H. Wang, C. U. Segre, and J. R. Stetter, “Humidity sensing properties of Nation and sol-gel derived SiO2/Nafion composite thin films,” Sensors and Actuators B: Chemical, 40, pp. 217-222, 1997
[11] J. Wang, B. Xu, J. Zhang, G. Liu, T. Zhang, F. Qiu, and M. Zhao, “Humidity sensors of composite material of nanocrystal BaTiO3 and polymer (R)nM+X−,” Journal of Materials Science Letters, 18, pp. 1603-1605, 1999
[12] S. Chatzandroulis, A. Tserepi, D. Goustouridis, P. Normand, and D. Tsoukalas, “Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor,” Microelectronic Engineering, 61-62, pp. 955-961, 2002
[13] C. Y. Lee and G. B. Lee, “Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation,” Journal of Micromechanics and Microengineering, 13, pp. 620-627, 2003
[14] V.K. Khanna, and R.K. Nahar, “Effect of moisture on the dielectric properties of porous alumina films,” Sensors and Actuators, 5, pp. 187-198, 1984
[15] C. L. Hsieh, P. H. Lo, and W. Fang, “Dual-layer nanoporous anodic aluminum oxide with embedded electrodes for capacitive relative
humidity sensor,” IEEE TRANSDUCERS & EUROSENSOR XXVII, pp. 2572-2575, 2013
[16] https://www.nasa.gov/topics/technology/features/aerogels.html
[17] V. P. J. Chung, C. L. Cheng, M. C. Yip, and W. Fang, “A CMOS capacitive vertical-parallel-plate-array humidity sensor with RF-aerogel fill-in for sensitivity and response time improvement,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 767-770, 2015
[18] T. Boltshauser and H. Baltes, “Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyimide,” Sensors and Actuators A: Physical, 26, pp. 509-512, 1991
[19] U. Kang and K. D. Wise, "A high-speed capacitive humidity sensor with on-chip thermal reset," IEEE Transactions on Electron Devices, 47, no. 4, pp. 702-710, Apr 2000
[20] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. G. Korvink, and O. Tabata, “CMOS-MEMS: Advanced Micro and Nanosystems,” John Wiley & Sons, 2008
[21] O. Brand, “Fabrication Technology,” CMOS-MEMS, ed: Wiley-VCH Verlag GmbH, pp. 1-67, 2008
[22] G. K. Fedder, “CMOS-based sensors, ” IEEE Sensors, pp. 125-128, 2005
[23] M. J. Lee, “Micromachining of Multilayer Thin Films for High-Speed Humidity Sensor Fabrication,”Japanese Journal of Applied Physics, 48
[24] J. B. Hasted, “Aqueous Dielectrics,” UK: Chapman and Hall, 1973.
[25] H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica, 31, pp. 401-406, 1965
[26] N. Lazarus and G. K. Fedder, “Designing a robust high-speed CMOS-MEMS capacitive humidity sensor,” Journal of Micromechanics and Microengineering, 22, pp. 085021, 2012
[27] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, 19, p. 105017, 2009
[28] W. C. Lin, C. L. Cheng, C. L. Wu and W. Fang, "Sensitivity improvement for CMOS-MEMS capacitive pressure sensor using double deformarle diaphragms with trenches," 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 782-785, 2017
[29] https://www.consumerreports.org/cro/smartwatch/buying-guide
[30] https://www.postscapes.com
[31] http://www.cwb.gov.tw/V7/knowledge/encyclopedia/in009.htm
[32] http://www.esa.int/spaceinimages/Images
[33] https://catalogue.museogalileo.it/object
[34] http://www.senyao1718.com/Article/gsqwdjjcgs.html
[35] https://www.youtube.com/watch?v=czHdnhASYdM
[36] https://www.bosch-sensortec.com
[37] C. S. Smith, “Piezoresistance Effect in Geruianium and Silicon,” Physical Review, 94, 1953
[38] Samaun, K. D. Wise, and J. B. Angell, “An IC Piezoresistive Pressure Sensor for Biomedical Instrumentation,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 20, pp. 101-109, 1973
[39] K. H. L. Chau, C. D. Fung, P. R. Harris, and G. A. Dahrooge, “A Versatile Polysilicon Diaphragm Pressure Sensor Chip,” IEEE International Electron Devices Meeting (IEDM), 91, pp. 761-764, 1991
[40] H. Sandmaier and K. Kuhl, “A Square-Diaphragm Piezoresistive Pressure Sensor with a Rectangular Central Boss for Low-Pressure Ranges,” IEEE TRANSACTIONS ON ELECTRON DEVICES, 40, pp. 1754-1759, 1993
[41] Å. Sandvand, E. Halvorsen, K. E. Aasmundtveit, and H. Jakobsen, “Influence of Sensor-Package Hermeticity-Level on Long-Term Drift for a Piezoresistive MEMS Pressure-Sensor,” European Microelectronics Packaging Conference, pp. 1-5, 2015
[42] C. H. Je, C. A. Choi, S. Q. Lee, and W. S. Yang, “Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity,” ETRI Journal, 38, pp. 685-694, 2016
[43] C. M. Lin, L. Y. Lin, and W. Fang, “Monolithic Integration of Carbon Nanotubes Based Physical Sensors,” IEEE International Conference on Micro Electro Mechanical Systems, pp. 55-58, 2010
[44] N. Narducci, Y. C. Liu, W. Fang, and J. Tsai, “CMOS MEMS capacitive absolute pressure sensor,” J. Micromech. Microeng., 23, pp. 055007, 2013
[45] C. M. Sun, C. Wang, M .H. Tsai, H. S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” J. Micromech. Microeng., 19, 2009
[46] W. C. Lin, C. L. Cheng, C. L. Wu and W. Fang, "Sensitivity improvement for CMOS-MEMS capacitive pressure sensor using double deformarle diaphragms with trenches," 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 782-785, 2017
[47] C. H. Chen, C. Y. Lee, S. M. Kuo and C. H. Lin, "High performance Humidity Sensor Based on Deliquescent Salt Diffused PI Film," 2006 5th IEEE Conference on Sensors, pp. 956-959, 2006
[48] C. L. Dai and D. H. Lu, "Fabrication of a micro humidity sensor with polypyrrole using the CMOS process," 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, pp. 110-113, 2010