研究生: |
陳宜 CHEN,YI |
---|---|
論文名稱: |
米氏酸衍生物與氧代氮代苯并環己烷化合物之共硬化反應特性及其共聚合物性質之研究 Characteristics of curing reaction and properties of crosslinked resins of the reactive blends of Meldrum’s acid derivatives and benzoxazine compounds |
指導教授: |
劉英麟
Liu,Ying-Ling |
口試委員: |
蔡敬誠
Tsai,Jing-Cherng 鄭如忠 Jeng,Ru-Jong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 乙烯酮 、米氏酸 、二聚合反應 、親核加成反應 、四圓環 、氧代氮代苯并環己烷 、狄爾斯阿爾德反應 |
外文關鍵詞: | Nucleophilic addition, diels- alder reaction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以米氏酸進行聚合反應,推測其聚合反應機制,並探討其熱硬化後之聚合物之性質。第一部分,將米氏酸衍生物摻混等當量之氧代氮代苯并環己烷(benzoxazine)單體,因其帶有三級胺的結構為Lewis bases可將米氏酸活化,使米氏酸開環反應溫度降低,藉由微差掃描卡計儀(DSC), 熱重分析儀(TGA), 紅外光譜儀(FT-IR)與核磁共振光譜儀(NMR)儀器證實其催化效果,並推測其催化反應機制。更進一步,藉由此反應機制,以不同當量米氏酸衍生物(MA-F)改質聚氧代氮代苯并環己烷單體(BPA-FBZ),然而其產生酯基的鍵結較弱,因此隨著添加的MA-F比例越高其熱穩定性則有較差的表現。
第二部分,將米氏酸衍生物(MA-FBCB)與雙馬來醯亞胺化合物進行Diels-Alder加成反應而聚合得到高分子(MA-FBCB-BMI),藉由微差掃描卡計儀(DSC), 熱重分析儀(TGA)與紅外光譜儀(FT-IR)鑑定其結構與純度,而此高分子相對於反應物米氏酸單體有更好的溶解度,增加了其後續加工的能力,而經由熱處理後所得到的交聯高分子,具有好的熱穩定性與低介電常數。
This study focuses on Meldrum’s acid (MA) polymerization mechanism as well as the properties of the correspond crosslinked polymers. In the first part, MA derivatives are blended with benzoxazine compound (F-BZ) with tertiary amine structure, which is a Lewis base, to undergo thermolysis at a much lower temperature. By means of DSC, TGA, FT-IR and NMR characterization, we confirmed its catalytic effect and mechanism. Furthermore, by this reaction mechanism, different equivalent MA derivative (MA-F) are applied to modify polybenzoxazine. Results indicate polymers modified with MA-F have poor thermal stability due to the week bonding of ester group.
In the second part, MA monomer with two furan group (MA-FBCB) was synthesized and used to polymerize with a bismaleimide compound through Diels-Alder reaction (DA reaction). The molecular structure was further verified by DSC, TGA, FT-IR. This polymer has better solubility and hence better potential than MA monomer (MA-FBCB). After crosslinking, a material with better thermal behavior and low dielectric constants was obtained.
1. Leibfarth, F.A., et al., A facile route to ketene-functionalized polymers for general materials applications. Nat Chem, 2010. 2(3): p. 207-212.
2. González, L., et al., Reduction of the shrinkage of thermosets by the cationic curing of mixtures of diglycidyl ether of bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione). Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(23): p. 6869-6879.
3. Fillion, E., et al., Meldrum's acids as acylating agents in the catalytic intramolecular friedel−crafts reaction. The Journal of Organic Chemistry, 2005. 70(4): p. 1316-1327.
4. Wolffs, M., M.J. Kade, and C.J. Hawker, An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications, 2011. 47(38): p. 10572-10574.
5. Wu, C.-Y., et al., Liberation of small molecules in polyimide membrane formation: An effect on gas separation properties. Journal of Membrane Science, 2016. 499: p. 20-27.
6. Cheawchan, S., et al., Thermotriggered catalyst-free modification of a glass surface with an orthogonal agent possessing nitrile n-oxide and masked ketene functions. Langmuir, 2016. 32(1): p. 309-315.
7. Jankovic, N., et al., Solvent-free synthesis of novel vanillidene derivatives of meldrum's acid: biological evaluation, DNA and BSA binding study. RSC Advances, 2016. 6(45): p. 39452-39459.
8. Wu, J., et al., Utilization of a meldrum's acid towards functionalized fluoropolymers possessing dual reactivity for thermal crosslinking and post-polymerization modification. Chemical Communications, 2015. 51(44): p. 9220-9222.
9. Leibfarth, F.A., et al., Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science, 2012. 3(3): p. 766-771.
10. Meldrum, A.N., LIV.-A [small beta]-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions, 1908. 93(0): p. 598-601.
11. Davidson, D. and S.A. Bernhard, The structure of meldrum's supposed β-lactonic acid. Journal of the American Chemical Society, 1948. 70(10): p. 3426-3428.
12. Arnett, E.M. and J.A. Harrelson, Ion pairing and reactivity of enolate anions. 7. A spectacular example of the importance of rotational barriers: the ionization of Meldrum's acid. Journal of the American Chemical Society, 1987. 109(3): p. 809-812.
13. Pihlaja, K. and M. Seilo, The acidity and general base-catalyzed hydrolysis of meldrum’s acid and Its methyl derivatives. Acta Chem. Scand, 1969. 23(0): p. 9.
14. McNab, H., Meldrum's acid. Chemical Society Reviews, 1978. 7(3): p. 345-358.
15. Staudinger, H., Ketene, eine neue Körperklasse. Berichte der deutschen chemischen Gesellschaft, 1905. 38(2): p. 1735-1739.
16. Tidwell, T.T., Ketene chemistry after 100 years: ready for a new century. European journal of organic chemistry, 2006. 2006(3): p. 563-576.
17. Nagai, D., A. Sudo, and T. Endo, Anionic alternating copolymerization of ketene and aldehyde: control of enantioselectivity by bisoxazoline-type ligand for synthesis of optically active polyesters. Macromolecules, 2006. 39(26): p. 8898-8900.
18. Goodwin, A.P., et al., Synthetic micelle sensitive to ir light via a two-photon process. Journal of the American Chemical Society, 2005. 127(28): p. 9952-9953.
19. Kumbaraci, V., N. Talinli, and Y. Yagci, Photoinduced crosslinking of polymers containing pendant hydroxyl groups by using bisbenzodioxinones. Macromolecular Rapid Communications, 2007. 28(1): p. 72-77.
20. Thirupathi, G., et al., Eco-friendly synthesis and antimicrobial activities of substituted-5-(1H-indol-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione derivatives. Medicinal Chemistry Research, 2014. 23(3): p. 1569-1580.
21. Shinde, S., et al., Facile knoevenagel and domino knoevenagel/michael reactions using gel-entrapped base catalysts. Helvetica Chimica Acta, 2011. 94(11): p. 1943-1951.
22. Dumas, A.M., et al., A general and practical preparation of alkylidene Meldrum’s acids. Tetrahedron Letters, 2007. 48(40): p. 7072-7074.
23. Song, A., X. Wang, and K.S. Lam, A convenient synthesis of coumarin-3-carboxylic acids via knoevenagel condensation of Meldrum's acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Letters, 2003. 44(9): p. 1755-1758.
24. Leibfarth, F.A., et al., Ketene functionalized polyethylene: control of cross-link density and material properties. Journal of the American Chemical Society, 2010. 132(42): p. 14706-14709.
25. Tasdelen, M.A., et al., Photoinduced cross-linking polymerization of monofunctional vinyl monomer without conventional photoinitiator and cross-linker. Macromolecules, 2007. 40(13): p. 4406-4408.
26. Durmaz, Y.Y., et al., Graft copolymers by the combination of ATRP and photochemical acylation process by using benzodioxinones. Macromolecules, 2009. 42(11): p. 3743-3749.
27. Fillion, E. and D. Fishlock,Scandium triflate-catalyzed intramolecular Friedel–Crafts acylation with Meldrum's acids: insight into the mechanism. Tetrahedron, 2009. 65(33): p. 6682-6695.
28. Holly, F.W. and A.C. Cope, Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. Journal of the American Chemical Society, 1944. 66(11): p. 1875-1879.
29. Burke, W.J., 3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-Substituted Phenols with N,N-Dimethylolamines. Journal of the American Chemical Society, 1949. 71(2): p. 609-612.
30. Dunkers, J. and H. Ishida, Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts. Journal of Polymer Science Part A Polymer Chemistry, 1999. 37(13): p. 1913-1921.
31. Wang, Y.X. and H. Ishida, Cationic ring-opening polymerization of benzoxazines. Polymer, 1999. 40(16): p. 4563-4570.
32. Sun, J., et al., A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties. RSC Advances, 2015. 5(25): p. 19048-19057.
33. Kimura, H., et al., New thermosetting resin from terpenediphenol-based benzoxazine and epoxy resin. Journal of Applied Polymer Science, 1999. 74(9): p. 2266-2273.
34. Chou, C.-I. and Y.-L. Liu, High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(19): p. 6509-6517.
35. Liu, Y.-L., C.-Y. Hsieh, and Y.-W. Chen, Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction. Polymer, 2006. 47(8): p. 2581-2586.
36. Liu, Y.-L. and Y.-W. Chen,Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromolecular Chemistry and Physics, 2007. 208(2): p. 224-232.
37. Watanabe, M. and N. Yoshie, Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers. Polymer, 2006. 47(14): p. 4946-4952.
38. Xu, Z., et al., A thermally healable polyhedral oligomeric silsesquioxane (POSS) nanocomposite based on Diels-Alder chemistry. Chemical Communications, 2013. 49(60): p. 6755-6757.
39. Durmaz, H., et al., Preparation of block copolymers via Diels Alder reaction of maleimide- and anthracene-end functionalized polymers. Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(5): p. 1667-1675.
40. Wan, L., et al., Polybenzoxazine-based nitrogen-containing porous carbons for high-performance supercapacitor electrodes and carbon dioxide capture. RSC Advances, 2015. 5(7): p. 5331-5342.
41. Lin, L.-K., et al., Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications, 2015. 51(64): p. 12760-12763.
42. Kai, Y., 含有米氏酸結構的可交聯高分子之合成與其熱固化樹脂之性質研究. 清華大學化學工程學系學位論文, 2015: p. 1-91.
43. Liu, Y.-L. and C.-I. Chou, High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(21): p. 5267-5282.