研究生: |
彭允玟 Peng, Yun-Wen |
---|---|
論文名稱: |
在室溫下合成出Cesium Lead Chloride鈣鈦礦立方體和截邊長方體 Synthesis of Cesium Lead Chloride Cubes and Edge-Truncated Cuboids at Room Temperature |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
李君婷
Li, Chun-Ting 陳方中 Chen, Fang-Chung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 鈣鈦礦 、晶面效應 、形狀控制 、無機材料 、螢光材料 |
外文關鍵詞: | facet-effect, shape-control, inorganic, Cesium Lead Chloride |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年關於金屬鹵化物鈣鈦礦材料的研究蓬勃發展,不過在眾多研究中,此材料的形貌多數呈現正方體或四角板。有鑑於此,本篇研究發展了新的方法,合成出不同型貌的CsPbCl3晶體,由於形貌的改變,其顯露的晶面也隨之改變。不同以往,此方法不需使用常用的吸附劑,例如接有長碳鏈的胺類以及羧酸,而是使用離子型的介面活性劑十二烷基硫酸鈉,且在室溫下即可進行反應。當前驅物CsCl與PbCl2的莫耳比例為1:1時,可合成出立方體形狀的CsPbCl3晶體,顯露的晶面為四個{100}以及兩個{001}晶面,當CsCl與PbCl2的比例上升至1:1.6時,則形成截邊長方體,暴露出四個{100}、兩個{001}、四個{110}以及八個{011}晶面。這種改變前驅物比例進而影響暴露之晶面的現象,可用熱力學的過飽和參數Δμ來解釋之。透過XRD的分析,兩種形狀的CsPbCl3晶體,皆為四方晶系,立方體的尺寸為50到155奈米之間,而截邊長方體則在130至400奈米之間。尺寸較小的立方體其光致發光量子產率幾乎為尺寸較大之截邊長方體的2.4倍,且當形狀從立方體轉變為截邊長方體時,其載子生命週期從1.36奈秒降至0.65奈秒,顯示了光學上的晶面效應。
Highly popular luminescent metal halide perovskites have been extensively studied recently. However, the shapes of crystals are mostly confined to six-faceted cubes and platelets. Here novel CsPbCl3 crystals with tunable morphologies and exposed facets have been synthesized in DMSO at room temperature without adding typical capping agents such as long carbon chain amines and carboxylic acids. Instead, ionic surfactant SDS was used in the reaction. CsPbCl3 cubes exposing four {100} and two {001} facets can be obtained at a CsCl to PbCl2 molar ratio of 1:1, while edge-truncated cuboids exposing four {100}, two {001}, four {110}, and eight {011} facets were produced at a CsCl:PbCl2 molar ratio of 1:1.6. The supersaturation parameter Δμ can be used to explain the appearance of higher surface energy facets with changing mole ratios. XRD analysis shows both the cubes and edge-truncated cuboids have a tetragonal crystal structure. The smaller cubes with sizes in the range 50 to 155 nm show almost 2.4 times higher photoluminescence quantum yield than the larger edge-truncated cuboids with sizes from 130 to 400 nm, and the average emission lifetime decreases from 1.36 to 0.65 ns as particle shape changes from cubes to edge-truncated cuboids. The result shows facet-dependent optical properties.
1. Hsieh, M. S.; Su, H. J.; Hsieh, P. L.; Chiang, Y. W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086‒39093.
2. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, Y.-C.; Huang, M. H. Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem.‒Eur. J. 2019, 25, 367–372.
3. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664–13671.
4. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033.
5. Huang, M. H.; Rej, S.; Chiu, C.-Y. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au–Cu2O and Bimetallic Core–Shell Nanocrystals. Small 2015, 11, 2716–2726.
6. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H. Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631–2638.
7. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530–3534.
8. Lee, A.-T.; Huang, M. H. Synthesis of Size-Tunable Zinc Blende ZnS Nanocrystals. J. Chin. Chem. Soc. 2020, 67, 339–343.
9. Thoka, S.; Lee, A.-T.; Huang, M. H. Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustainable Chem. Eng. 2019, 7, 10467–10476.
10. Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-Dependent Optical and Photothermal Properties of Au@Ag–Cu2O Core–Shell Nanocrystals. Chem. Mater. 2016, 28, 5140–5146.
11. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155–2160.
12. Tan, C.-S.; Chen, Y. J.; Hsia, C. F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem.‒Asian J. 2017, 12, 293–
62
297.
13. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28, 1574–1580.
14. Tan, C.-S.; Huang, M. H. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem.‒Eur. J. 2017, 23, 11866–11871.
15. Tan, C. S.; Hsieh, P. L.; Chen, L. J.; Huang, M. H. Silicon Wafers with Facet‐Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2017, 129, 15541–15545.
16. Hsieh, P.-L.; Lee, A.-T.; Chen, L.-J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57, 16162–16165.
17. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672–19679.
18. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116–15123.
19. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au-Decorated Cu2O Heterostructures. Chem.‒Eur. J. 2016, 22, 12548–12556.
20. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H. Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944–12950.
21. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K. Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J.; Lo, Y.-C.; Huang, M. H. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582–3589.
22. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
23. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic Activity Suppression of Ag3PO4-Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123, 2314–2320.
24. Chanda, K.; Rej, S.; Huang, M. H. Facet-Dependent Catalytic Activity of Cu2O
63
Nanocrystals in the One-Pot Synthesis of 1,2,3-Triazoles by Multicomponent Click Reactions. Chem.‒Eur. J. 2013, 19, 16036–16043.
25. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5, 12494–12501.
26. Madasu, M.; Hsia, C.-F.; Huang, M. H. Au–Cu Core–Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles. Nanoscale 2017, 9, 6970–6974.
27. Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M. H. Control of Regioselectivity over Gold Nanocrystals of Different Surfaces for the Synthesis of 1,4-Disubstituted Triazole through the Click Reaction. Chem.‒Eur. J. 2014, 20, 15991–15997.
28. Tsai, H.-Y.; Madasu, M.; Huang, M. H. Polyhedral Cu2O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chem.‒Eur. J. 2019, 25, 1300–1303.
29. Huang, M. H. Semiconductor Nanocrystals Possessing Broadly Size- and Facet-Dependent Optical Properties. J. Chin. Chem. Soc. 2021, 68, 45–50.
30. Kim, Y.-H.; Wolf, C.; Kim, Y.-T.; Cho, H.; Kwon, W.; Do, S.; Sadhanala, A.; Park, C. G.; Rhee, S.-W.; Im, S. H.; Friend, R. H.; Lee, T.-W. Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano 2017, 11, 6586–6593.
31. Chen, M.; Zou, Y.; Wu, L.; Pan, Q.; Yang, D.; Hu, H.; Tan, Y.; Zhong, Q.; Xu, Y.; Liu, H.; Sun, B.; Zhang, Q. Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Adv. Funct. Mater. 2017, 27, 1701121.
32. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
33. Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and Challenges of Perovskite Solar Cells. Science 2017, 358, 739–744.
34. Stranks, S. D.; Snaith, H. J. Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nat. Nanotechnol. 2015, 10, 391–402.
35. Feng, J.; Gong, C.; Gao, H.; Wen, W.; Gong, Y.; Jiang, X.; Zhang, B.; Wu, Y.; Wu, Y.; Fu, H.; Jiang, L.; Zhang, X. Single-Crystalline Layered Metal-Halide Perovskite Nanowires for Ultrasensitive Photodetectors. Nat. Electron. 2018, 1, 404–410.
36. Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T.-W.; Sargent, E. H. Perovskites for Next-Generation Optical Sources. Chem. Rev. 2019, 119, 7444–7477.
37. Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.;
64
Han, S.; Liang, L.; Yi, Z.; Li, J.; Xie, X.; Wang, Y.; Li, Y.; Fan, D.; Teh, D. B. L.; All, A. H.; Mohammed, O. F.; Bakr, O. M.; Wu, T.; Bettinelli, M.; Yang, H.; Huang, W.; Liu, X. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 88–93.
38. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.
39. Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and Their Passivation in Halide Perovskite Solar Cells. Chem. Soc. Rev. 2019, 48, 3842–3867.
40. Bartos, C.; Jójárt-Laczkovich, O.; Katona, G.; Budai-Szűcs, M.; Ambrus, R.; Bocsik, A.; Gróf, I.; Deli, M. A.; Szabó-Révész, P. Optimization of a Combined Wet Milling Process In Order to Produce Poly(Vinyl Alcohol) Stabilized Nanosuspension. Drug Des. Devel. Ther. 2018, 12, 1567–1580.
41. Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119, 3296–3348.
42. Sinatra, L.; Pan, J. Bakr, O. M. Methods of Synthesizing Monodisperse Colloidal Quantum Dots. Material Matters, March, 2017, 12.1.
43. Bullen, C. R.; Mulvaney, P. Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Lett. 2004, 4, 2303–2307.
44. Yu, W. W.; Peng, X. Formation of High‐Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angew. Chem. Int. Ed. 2002, 41, 2368–2371.
45. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696.
46. Güner, T. Down-converting polymer composites and their white light applications. Ph.D. Dissertation, University of Ottawa, 2018.
47. Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano 2016, 10, 7943–7954.
48. Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals. ACS Nano 2018, 12, 1704–1711.
49. Peng, L.; Dutta, S. K.; Mondal, D.; Hudait, B.; Shyamal, S.; Xie, R.; Mahadevan,
65
P.; Pradhan, N. Arm Growth and Facet Modulation in Perovskite Nanocrystals. J. Am. Chem. Soc. 2019, 141, 16160–16168.
50. Bera, S.; Behera, R. K.; Pradhan, N. α-Halo Ketone for Polyhedral Perovskite Nanocrystals: Evolutions, Shape Conversions, Ligand Chemistry, and Self-Assembly. J. Am. Chem. Soc. 2020, 142, 20865–20874.
51. Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano. 2015, 9, 4533–4542.
52. Kumar, S.; Jagielski, J.; Marcato, T.; Solari, S. F.; Shih, C.-J. Understanding the Ligand Effects on Photophysical, Optical, and Electroluminescent Characteristics of Hybrid Lead Halide Perovskite Nanocrystal Solids. J. Phys. Chem. Lett. 2019, 10, 7560–7567.
53. Zhang, X.; Bai, X.; Wu, H.; Zhang, X.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W.; Yu, W. W.; Rogach, A. L. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2018, 57, 3337–3342.
54. Gong, M.; Sakidja, R.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Z. High-Performance All-Inorganic CsPbCl3 Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano 2019, 13, 1772–1783.
55. Lv, L.; Xu, Y.; Fang, H.; Luo, W.; Xu, F.; Liu, L.; Wang, B.; Zhang, X.; Yang, D.; Hu, W.; Dong, A. Generalized Colloidal Synthesis of High-Quality, Two-Dimensional Cesium Lead Halide Perovskite Nanosheets and Their Applications in Photodetectors. Nanoscale 2016, 8, 13589–13596.
56. Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
57. Fu, Y.; Zhu, H.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X.; Jin, S. Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.
58. Calistru, D. M.; Mihut, L.; Lefrant, S.; Baltog, I. Identification of the Symmetry of Phonon Modes in CsPbCl3 in Phase IV by Raman and Resonance-Raman Scattering. J. Appl. Phys. 1997, 82, 5391–5395.
59. Ahmad, M.; Rehman, G.; Ali, L.; Shafiq, M.; Iqbal, R.; Ahmad, R.; Khan, T.; Jalali-Asadabadi, S.; Maqbool, M.; Ahmad, I. Structural, Electronic and Optical Properties of CsPbX3 (X = Cl, Br, I) for Energy Storage and Hybrid Solar Cell Applications. J. Alloys Compd. 2017, 705, 828–839.
66
60. Das, S.; Paul, T.; Maiti, S.; Chattopadhyay, K. K. Ambient Processed CsPbX3 Perovskite Cubes for Photocatalysis. Mater. Lett. 2020, 267, 127501.
61. Tsiwah, E. A.; Ding, Y.; Li, Z.; Zhao, Z.; Wang, M.; Hu, C.; Liu, X.; Sun, C.; Zhao, X.; Xie, Y. One-Pot Scalable Synthesis of All-Inorganic Perovskite Nanocrystals with Tunable Morphology, Composition and Photoluminescence. CrystEngComm 2017, 19, 7041–7049.
62. Zhang, J.; Wang, Q.; Zhang, X.; Jiang, J.; Gao, Z.; Jin, Z.; Liu, S. High-Performance Transparent Ultraviolet Photodetectors Based on Inorganic Perovskite CsPbCl3 Nanocrystals. RSC Adv. 2017, 7, 36722–36727.
63. Mondal, N.; De, A.; Samanta, A. Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 32–39.
64. Pan, G.; Bai, X.; Yang, D.; Chen, X.; Jing, P.; Qu, S.; Zhang, L.; Zhou, D.; Zhu, J.; Xu, W.; Dong, B.; Song, H. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Lett. 2017, 17, 8005–8011.
65. Milstein, T. J.; Kroupa, D. M.; Gamelin, D. R. Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. Nano Lett. 2018, 18, 3792–3799.
66. Pradhan, N. Alkylammonium Halides for Facet Reconstruction and Shape Modulation in Lead Halide Perovskite Nanocrystals. Acc. Chem. Res. 2021, 54, 1200–1208.
67. Pradhan, N. Why Do Perovskite Nanocrystals Form Nanocubes and How Can Their Facets Be Tuned? A Perspective from Synthetic Prospects. ACS Energy Lett. 2021, 6, 92–99.
68. Hudait, B.; Dutta, S. K.; Patra, A.; Nasipuri, D.; Pradhan, N. Facets Directed Connecting Perovskite Nanocrystals. J. Am. Chem. Soc. 2020, 142, 7207–7217.
69. Rao, L.; Tang, Y.; Song, C.; Xu, K.; Vickers, E. T.; Bonabi Naghadeh, S.; Ding, X.; Li, Z.; Zhang, J. Z. Polar-Solvent-Free Synthesis of Highly Photoluminescent and Stable CsPbBr3 Nanocrystals with Controlled Shape and Size by Ultrasonication. Chem. Mater. 2019, 31, 365–375.
70. Li, Y.; Huang, H.; Xiong, Y.; Kershaw, S. V.; Rogach, A. L. Revealing the Formation Mechanism of CsPbBr3 Perovskite Nanocrystals Produced via a Slowed‐Down Microwave‐Assisted Synthesis. Angew. Chem. Int. Ed. 2018, 57, 5833–5837.
71. Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature. Adv. Sci. 2015, 2, 1500194.
67
72. Zhang, W.; He, L.; Tang, D.; Li, X. Surfactant Sodium Dodecyl Benzene Sulfonate Improves the Efficiency and Stability of Air‐Processed Perovskite Solar Cells with Negligible Hysteresis. Sol. RRL 2020, 4, 2000376.
73. Zhang, J.; Yin, C.; Yang, F.; Yao, Y.; Yuan, F.; Chen, H.; Wang, R.; Bai, S.; Tu, G.; Hou, L. Highly Luminescent and Stable CsPbI3 Perovskite Nanocrystals with Sodium Dodecyl Sulfate Ligand Passivation for Red-Light-Emitting Diodes. J. Phys. Chem. Lett. 2021, 12, 2437–2443.
74. Holder, C. F.; Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365.
75. Hu, X.; Wang, X.; Zhuang, S.; Xu, J. Facile Solution Synthesis, Morphology Control, and Anisotropic Optical Performance of CsPbCl3 Microcrystals. CrystEngComm 2020, 22, 178–183.
76. Zhao, Z.; Xu, W.; Pan, G.; Liu, Y.; Yang, M.; Hua, S.; Chen, X.; Peng, H.; Song, H. Enhancing the Exciton Emission of CsPbCl3 Perovskite Quantum Dots by Incorporation of Rb+ Ions. Mater. Res. Bull. 2019, 112, 142–146.
77. Chen, H.; Guo, A.; Gu, X.; Feng, M. Highly luminescent CsPbX3 (X=Cl, Br, I) Perovskite Nanocrystals with Tunable Photoluminescence Properties. J. Alloys Compd. 2019, 789, 392–399.
78. Terlingen, J. G. A.; Feijen, J.; Hoffman, A. S. Immobilization of Surface Active Compounds on Polymer Supports Using Glow Discharge Processes: 1. Sodium Dodecyl Sulfate on Poly(propylene). J. Colloid Interface Sci. 1993, 155, 55–65.
79. Kuo, B.-H.; Hsia, C.-F.; Chen, T.-N.; Huang, M. H. Systematic Shape Evolution of Gold Nanocrystals Achieved through Adjustment in the Amount of HAuCl4 Solution Used. J. Phys. Chem. C 2018, 122, 25118–25126.
80. Lin, H.-x.; Lei, Z.-c.; Jiang, Z.-y.; Hou, C.-p.; Liu, D.-y.; Xu, M.-m.; Tian, Z.-q.; Xie, Z.-x. Supersaturation-Dependent Surface Structure Evolution: From Ionic, Molecular to Metallic Micro/Nanocrystals. J. Am. Chem. Soc. 2013, 135, 9311–9314.
81. Luo, B.; Pu, Y.-C.; Lindley, S. A.; Yang, Y.; Lu, L.; Li, Y.; Li, X.; Zhang, J. Z. Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angew. Chem. Int. Ed. 2016, 55, 8864–8868.
82. Markov, I. V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd ed.; World Scientific, 2003; p 5.
83. Di Liberto, G.; Fatale, O.; Pacchioni, G. Role of Surface Termination and Quantum Size in α-CsPbX3 (X = Cl, Br, I) 2D Nanostructures for Solar Light Harvesting. Phys. Chem. Chem. Phys. 2021, 23, 3031–3040.
84. Chiu, C.-Y.; Chen, C.-K.; Chang, C.-W.; Jeng, U. S.; Tan, C.-S.; Yang, C.-W.; Chen, L.-J.; Yen, T.-J.; Huang, M. H. Surfactant-Directed Fabrication of Supercrystals
68
from the Assembly of Polyhedral Au–Pd Core–Shell Nanocrystals and Their Electrical and Optical Properties. J. Am. Chem. Soc. 2015, 137, 2265–2275.
85. Huang, M. H.; Thoka, S. Formation of Supercrystals through Self-Assembly of Polyhedral Nanocrystals. Nano Today 2015, 10, 81–92.
86. Rao, Z.; Liang, W.; Huang, H.; Ge, J.; Wang, W.; Pan, S. High Sensitivity and Rapid Response Ultraviolet-Violet Photodetector of Tetragonal CsPbCl3 Perovskite Single Crystal. Opt. Mater. Express 2020, 10, 1374–1382
87. Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817.
88. Chu, S.; Pan, S.; Li, G. Trap State Passivation and Photoactivation in Wide Band Gap Inorganic Perovskite Semiconductors. Phys. Chem. Chem. Phys. 2018, 20, 25476–25481.
89. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.
90. Chen, J.; Zhang, C.; Liu, X.; Peng, L.; Lin, J.; Chen, X. Carrier Dynamic Process in All-Inorganic Halide Perovskites Explored by Photoluminescence Spectra. Photonics Res. 2021, 9, 151–170.
91. Yong, Z.-J.; Guo, S.-Q.; Ma, J.-P.; Zhang, J.-Y.; Li, Z.-Y.; Chen, Y.-M.; Zhang, B.-B.; Zhou, Y.; Shu, J.; Gu, J.-L.; Zheng, L.-R.; Bakr, O. M.; Sun, H.-T. Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield. J. Am. Chem. Soc. 2018, 140, 9942–9951.
92. Chen, W.; Chen, H.; Xu, G.; Xue, R.; Wang, S.; Li, Y.; Li, Y. Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells. Joule 2019, 3, 191–204.
93. Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. Angew. Chem. Int. Ed. 2016, 55, 13887–13892.