簡易檢索 / 詳目顯示

研究生: 葉正淯
Yeh, Cheng-Yu
論文名稱: 利用著色方法和A*演算法在蛋白質互動網路中找尋生物路徑
Pathway Detection from Protein Interaction Networks a Using Color-Coding Method and an A* Algorithm
指導教授: 蘇豐文
Soo, Von-Wun
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 28
中文關鍵詞: 路徑探索著色方法A*啟發式搜尋蛋白質互動反應
外文關鍵詞: Pathway detection, Color-coding method, A* heuristic search, Protein-protein interaction
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今蛋白質互動反應資料與生物微晶片的實驗數據非常豐富,但是生物學家對於自然界生物的生物反應路徑還沒有很完整的了解。我們把這樣的生物問題推延成資訊領域中的搜尋問題,在複雜的生物網路中,尋找最佳的生物反應路徑可以視為NP問題。因此,我們從拓譜學的角度提出著色方法應用在生物網路上來解決這問題,並利用A*啟發式搜尋法來加快搜尋的速度,根據生物晶片所得到的基因表現來找出最有可能有反應的蛋白質所組成的路徑。在實驗中,我們成功的重建酵母菌的費洛蒙相關反應路徑,更預測人類前列腺癌的反應路徑,重建出來的路徑和KEGG資料庫有著很高的相似度。從速度上來評估,我們的方法比起之前的研究也比較快速,在尋找長度8的反應路徑時平均只花費6秒的時間,而長度10平均26秒。


    With the large availability of protein-protein interaction data, to identify linear biological meaningful pathways in the sense of optimality on likelihood weights is regarded as a NP-problem. We proposed a color-coding method based on the characteristics of biological network topology to solve this problem and applied an A* heuristic search to speed up the color-coding method in order to extract minimum weight of pathways that most likely have protein-protein interactions corresponding to the microarray data. In the experiments, we tested the methods by applying them to the networks of yeast and human prostate cancer and the results showed that we were able to reconstruct known signaling pathways in comparison to the recent KEGG pathway database. Our algorithms are more efficient than the previous ones and can detect optimal and functional enrichment paths of length 8 within 6 seconds and paths of length 10 within 29 seconds on average.

    中文摘要 i Abstract ii Acknowledgement iii List of Figures iv List of Tables v Table of Contents vi 1. INTRODUCTION 1 2. METHODS 3 2.1 Network construction from microarray data and protein-protein interactions database 3 2.2 Color-coding Methods based on characteristics of network topology 6 2.3 A* algorithm as heuristic search 8 2.4 Functional evaluation on the pathway detection results 11 3. EXPERIMENTS 12 3.1 Validation results 12 3.2 Evaluation using some known pathways from Yeast 14 3.3 The significant pathway of prostate cancer 19 3.4 Execution time of our methods 22 4. DISCUSSION AND CONCLUSION 25 REFERENCES 26

    Albert-Laszlo Barabasi and Zoltan N. Oltvai, (2004) Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-13.
    David E. Levin, (2005) Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiology and molecular biology reviews, 69(2), 262–291.
    D. M. Parkin, et al. (2001) Cancer burden in the year 2000. The global picture. European Journal of Cancer, 37,4-66.
    Douglas I. Johnson (1999) Cdc42: An Essential Rho-Type GTPase Controlling Eukaryotic Cell Polarity. Microbiology and molecular biology reviews, 63(1), 54–105.
    Ernest Blackwell , et al. (2003) Effect of the Pheromone-Responsive G and Phosphatase Proteins of Saccharomyces cerevisiae on the Subcellular Localization of the Fus3 Mitogen-Activated Protein Kinase , Molecular and Cellular Biology, 23(4), 1135-1150.
    Falk huffner, et al. (2008) Algorithm engineering for color-coding to facilitate signaling pathway detection. Algorithmica, 52(2), 114–132.
    Gavin Sherlock, et al. (2001) The Stanford Microarray Database. Nucleic Acids Research, 29(1), 152-155.
    Hay-Oak Park and Erfei Bi (2007) Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond. Microbiology and molecular biology reviews, 71(1), 48–96.
    H. Jeong, et al. (2000) The large-scale organization of metabolic networks. Nature, 407, 651–654.
    H. Jeong, et al. (2001) Lethality and centrality in protein networks. Nature, 411, 41-42.
    Hsueh-Chuan Liu, et al. (2009) BioIR: An approach to public domain resource integration of human protein-protein interaction.
    Ioannis Xenarios, et al. (2002) Dip, the database of interacting proteins: a search tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30(1), 303-305.
    Jacob Scott, et al. (2005) Efficient algorithms for detecting signaling pathways in protein interaction networks. Ninth Annual International Conference on Research in Computational Molecular Biology, LNBI, 3500, 1-13.
    Jacques Lapointe, et al. (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. The National Academy of Sciences. 101(3), 811–81.
    Li,L. et al. (2003) PGDB: a curated and integrated database of genes related to the prostate. Nucleic Acids Res. 31, 291-293.
    Martin Steffen, et al. (2002) Automated modeling of signal transduction networks. BMC Bioinformatics, 3, 34.
    M. Ashburner, et al. (200) Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1), 25–29.
    N. Przulj, et al. (2004). Functional topology in a network of protein interactions. Bioinformatics, 20(3), 340–348.
    Noga Alon, et al. (1995) Color-coding. Journal of ACM, 42(4), 844-856.
    Olga Troyanskaya, et al. (2001) Missing value estimation methods for DNA microarrays. Bioinformatics, 17, 520-525.
    OMIM (2007) Online Mendelian inheritance in man, OMIM (TM). Available at http://www.ncbi.nlm.nih.gov/omim/
    Safaraz,S. et al. (2006) Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells Incap proceeds through sustained activation of erk1/2 leading to g1 cell cycle arrest. J. Biol, Chem., 281, 39480-39491.
    Sean P. Palecek. et al. (2002) Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology, 148, 893–907.
    S. Grossmann, et al. (2006) An improved statistic for detecting over-represented gene ontology annotations in gene sets. In 10th International Conference on Research in Computational Molecular Biology (RECOMB’06), 85–98.
    Wang,H. et al. (2003) Experimental therapy of human prostate cancer y inhibiting mdm2 expression with novel mixed-backbone antisense oligonucletides: in vitro and in vivo activities and mechanisms. Prostate, 54, 194-205.
    Xing-ming Zhao, et al. (2007) Automatic modeling of signal pathways from protein-protein interaction networks. Proceeding Trim Size, 3, 42.
    Yasushi Matsui, et al. (1996) Yeast src homology region 3 domain-binding proteins involved in bud formation. J Cell Biol, 133(4), 865–878.
    Yoshinori Tamada, et al. (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 19, 227–236.
    Zhang,Z. et al. (2003) Antisense therapy targeting mdm2 oncogene in prostate cancer: effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc. Natl Acad Sci., 100, 11636-11641.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE