簡易檢索 / 詳目顯示

研究生: 張志澤
Chang, Chih Tse
論文名稱: 以電化學蝕刻法製備多孔隙矽薄膜及其儲能元件應用
Fabrication of Porous Silicon Films by Electrochemical Etching and Its Application for Energy Storage Devices
指導教授: 闕郁倫
Chueh, Yu Lun
口試委員: 呂世源
Lu, Shih Yuan
陳建勳
Chen, Chien Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 57
中文關鍵詞: 多孔矽鋰離子電池超級電容器石墨烯
外文關鍵詞: porous silicon, lithium-ion battry, supercapacitor, graphene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著重於開發以電化學蝕刻法製備之多種製程,並將多孔矽應用於能量儲存材料以及其降低太陽能電池之成本潛力。
    矽(Si)是地球上含量第二豐富的材料,由於其低成本及良好的本質特性,目前已經被廣泛地應用在電池、半導體工業以及太陽能等產業,多孔結構的矽更是一良好的功能性材料。以電化學蝕刻法製備多孔矽為一方便且低成本之方法,此外,更能夠輕易達到大面積製造。由於矽的低成本且具有非常高的理論電容值,因此是非常良好的鋰電池陽極材料。然而其充放電時的體積膨脹容易導致結構破壞,因而降低電池的壽命。本論文提出將多孔矽膜製成矽奈米顆粒來改善結構,因而得到良好的電容、庫倫效率,以及電池元件壽命的增加。由於多孔矽的高比表面積特性,我們更進一步在矽晶圓上形成多孔矽,並藉由表面披覆數奈米的石墨烯,形成一具有高比電容及高穩定性的矽基超電容元件。在本論文的末端,為了要改善矽基太陽能電池之成本問題,我們利用控制奈米矽的結構,成功在矽晶圓基板上分離出具有可撓性的多孔矽薄膜及準單晶(quasi-monocrystalline)矽薄膜,並具有未來發展於太陽能電池產業之潛力。


    This thesis aims to develop several processes of electrochemical etched porous silicon for either energy storage devices or demonstrating its potential for silicon-based solar cells.
    Silicon, the second most abundant material on earth, has been utilized in a wide range of regimes including batteries, semiconductor industry, and solar cells due to its low cost and well-developed technology. Porous silicon (PSi), as a functional material either due to its intrinsic property or the porous structure, has been presented to be fabricated by electrochemical etching, which is a facile and cost-effective method for producing porous silicon in a large scale. For lithium-ion batteries, the high theoretical capacity makes it a suitable candidate for anode material. However, the volume expansion during lithiation/delithiation limits its cycling performance. In this thesis, SiNPs produced from PSi has been exploited to lithium-ion batteries with excellent capacitance, columbic efficiency, and cycling retention. Porous silicon is further exploited as electrodes of supercapacitors after few-layer of graphene coating, showing competitive specific capacitance and stable cycling retention. In the last part of the results, porous silicon films and quasi-monocrystalline silicon films possessing extraordinary flexibility are exfoliated from silicon wafers, showing good potential for reusing the silicon wafers to reduce cost of Si-based solar cells.

    Content I Abstract IV 摘要 V Acknowledgement VI Chapter 1 Introduction 1 1.1 Background 1 1.2 Porous silicon 2 1.2.1 Electrochemical etching of PSi 2 1.2.2 Pore-reorganization upon annealing 6 1.2.3 Layer transfer process (LTP) utilizing porous silicon 7 1.3 Lithium-ion Batteries 9 1.3.1 Fundamentals of Lithium-ion Batteries 9 1.3.2 Si-based Lithium-ion Batteries 13 1.4 Supercapacitors 17 1.4.1 Fundamentals of Supercapacitors 17 1.4.2 Silicon-based supercapacitors 18 Chapter 2 Experiment instruments 19 2.1 Tube furnace 19 2.2 Scanning Electron Microscopy 20 2.3 High resolution transmission electron microscopy 21 2.4 Raman spectrum analysis, Raman 21 2.5 X-Ray diffraction mode 22 2.6 UV-visible-NIR Spectrophotometers 23 Chapter 3 Results and Discussion 24 3.1 Si-based anode for Lithium-ion Battery 24 3.1.1 Material Synthesis 24 3.1.2 Characterization 25 3.2 PSi-based electrodes for electrochemical double layer supercapacitors 28 3.2.1 Fabrication and activation of PSi electrodes 28 3.2.2 Supercapacitor performance of PSi-based electrodes 35 3.3 Exfoliation of PSi thin films 39 3.3.1 The effect of etching current 39 3.3.2 Exfoliation of PSi films by etching current 40 3.3.3 Effect of pore-reorganization upon annealing 41 3.3.4 Characterizaiton of exfoliated films 45 Chapter 4 Conclusions and future works 49 References 50

    [1] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, et al., "Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell," Ieee Journal of Photovoltaics, vol. 4, pp. 1433-1435, Nov 2014.
    [2] C. F. J Britt, "Thin‐film CdS/CdTe solar cell with 15.8% efficiency," Applied Physics Letters, vol. 62, 1993.
    [3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 46)," Progress in Photovoltaics, vol. 23, pp. 805-812, Jul 2015.
    [4] K. BM, "27.6% conversion efficiency, a new record for single-junction solar cellsunder 1 sun illumination.," presented at the Proceedings of the 37thIEEE Photovoltaic Specialists Conference, 2011.
    [5] J. S. Ward, K. Ramanathan, F. S. Hasoon, T. J. Coutts, J. Keane, M. A. Contreras, et al., "A 21.5% efficient Cu(In,Ga)Se-2 thin-film concentrator solar cell," Progress in Photovoltaics, vol. 10, pp. 41-46, Jan 2002.
    [6] J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, et al., "Microsystems enabled photovoltaics: 14.9% efficient 14 mu m thick crystalline silicon solar cell," Solar Energy Materials and Solar Cells, vol. 95, pp. 551-558, Feb 2011.
    [7] M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, et al., "15.7% Efficient 10-mu m-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures," Advanced Materials, vol. 27, pp. 2182-+, Apr 1 2015.
    [8] G. J. Li, H. Li, J. Y. L. Ho, M. Wong, and H. S. Kwok, "Nanopyramid Structure for Ultrathin c-Si Tandem Solar Cells," Nano Letters, vol. 14, pp. 2563-2568, May 2014.
    [9] H. S. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysen, M. Debucquoy, J. Govaerts, et al., "Improving the Quality of Epitaxial Foils Produced Using a Porous Silicon-based Layer Transfer Process for High-Efficiency Thin-Film Crystalline Silicon Solar Cells," Ieee Journal of Photovoltaics, vol. 4, pp. 70-77, Jan 2014.
    [10] M. Armand and J. M. Tarascon, "Building better batteries," Nature, vol. 451, pp. 652-657, Feb 7 2008.
    [11] L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, pp. 2520-2531, 2009.
    [12] H. Wu, G. H. Yu, L. J. Pan, N. A. Liu, M. T. McDowell, Z. A. Bao, et al., "Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles," Nature Communications, vol. 4, Jun 2013.
    [13] K. J. Zhao, W. L. Wang, J. Gregoire, M. Pharr, Z. G. Suo, J. J. Vlassak, et al., "Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study," Nano Letters, vol. 11, pp. 2962-2967, Jul 2011.
    [14] W. J. Lee, T. H. Hwang, J. O. Hwang, H. W. Kim, J. Lim, H. Y. Jeong, et al., "N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries," Energy & Environmental Science, vol. 7, pp. 621-626, Feb 2014.
    [15] X. Y. Zhu, D. J. Yang, J. J. Li, and F. B. Su, "Nanostructured Si-Based Anodes for Lithium-Ion Batteries," Journal of Nanoscience and Nanotechnology, vol. 15, pp. 15-30, Jan 2015.
    [16] P. Sharma and T. S. Bhatti, "A review on electrochemical double-layer capacitors," Energy Conversion and Management, vol. 51, pp. 2901-2912, Dec 2010.
    [17] K. Grigoras, J. Keskinen, L. Gronberg, J. Ahopelto, and M. Prunnila, "Coated Porous Si for High Performance On-Chip Supercapacitors," 14th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Powermems 2014), vol. 557, 2014.
    [18] X. L. Chen, H. J. Lin, J. Deng, Y. Zhang, X. M. Sun, P. N. Chen, et al., "Electrochromic Fiber-Shaped Supercapacitors," Advanced Materials, vol. 26, pp. 8126-8132, Dec 23 2014.
    [19] X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in Hf Solution," Journal of the Electrochemical Society, vol. 136, pp. 1561-1565, May 1989.
    [20] R. Memming and G. Schwandt, "Anodic Dissolution of Silicon in Hydrofluoric Acid Solutions," Surface Science, vol. 4, pp. 109-&, 1966.
    [21] D. R. Turner, "Electropolishing Silicon in Hydrofluoric Acid Solutions," Journal of the Electrochemical Society, vol. 105, pp. C55-C56, 1958.
    [22] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, "Microstructure and Formation Mechanism of Porous Silicon," Applied Physics Letters, vol. 46, pp. 86-88, 1985.
    [23] V. Lehmann and U. Gosele, "Porous Silicon Formation - a Quantum Wire Effect," Applied Physics Letters, vol. 58, pp. 856-858, Feb 25 1991.
    [24] V. A. Labunov, V. P. Bondarenko, V. E. Borisenko, and A. M. Dorofeev, "High-Temperature Treatment of Porous Silicon," Physica Status Solidi a-Applied Research, vol. 102, pp. 193-198, Jul 16 1987.
    [25] R. L. Smith, S. F. Chuang, and S. D. Collins, "A Theoretical-Model of the Formation Morphologies of Porous Silicon," Journal of Electronic Materials, vol. 17, pp. 533-541, Nov 1988.
    [26] V. Labunov, V. Bondarenko, L. Glinenko, A. Dorofeev, and L. Tabulina, "Heat-Treatment Effect on Porous Silicon," Thin Solid Films, vol. 137, pp. 123-134, Mar 1 1986.
    [27] W. Schatt, "Kossel Technique and Positron Annihilation Used to Clarify Sintering Processes," Progress in Materials Analysis Mikrochimica Acta Supplementum, vol. 11, 1985.
    [28] Y. E. Geguzin, A. S. Dzyuba, and V. P. Matsokin, "On Dislocation-Structure, Formed in a Contact Zone of 2 Single-Crystals," Ukrainskii Fizicheskii Zhurnal, vol. 29, pp. 1419-1422, 1984.
    [29] T. Mueller, "Modeling of Morphological Changes by Surface Diffusion in Silicon Trenches," ECS Transactions, vol. 2, pp. 363-374, 2006.
    [30] R. Brendel, "Thin-film crystalline silicon mini-modules using porous Si for layer transfer," Solar Energy, vol. 77, pp. 969-982, 2004.
    [31] H. Tayanaka, presented at the Porceeding of the Second Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria, 1998.
    [32] T. Yonehara, K. Sakaguchi, and N. Sato, "Epitaxial Layer Transfer by Bond and Etch Back of Porous Si," Applied Physics Letters, vol. 64, pp. 2108-2110, Apr 18 1994.
    [33] Battery University.
    [34] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, Nov 15 2001.
    [35] J. Hajek, french Patent, 1949.
    [36] K. A. Klinedinst, U.S. Patent, 1979.
    [37] A. A. Schneider, U. S. Patent, 1972.
    [38] M. S. Whittingham, "Electrical Energy-Storage and Intercalation Chemistry," Science, vol. 192, pp. 1126-1127, 1976.
    [39] J. M. Amarilla, J. L. M. de Vidales, and R. M. Rojas, "Electrochemical characteristics of cobalt-doped LiCoyMn2-yO4 (0 <= y <= 0.66) spinels synthesized at low temperature from CoxMn3-xO4 precursors," Solid State Ionics, vol. 127, pp. 73-81, Jan 2000.
    [40] M. S. Whittingham, U. S. Patent, 1977.
    [41] K. Brandt, "A 65-Ah Rechargeable Lithium Molybdenum-Disulfide Battery," Journal of Power Sources, vol. 18, pp. 117-125, Aug-Sep 1986.
    [42] E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model," Journal of the Electrochemical Society, 1979.
    [43] B. Scrosati. (1993). Lithium Polymer Batteries.
    [44] R. Bittihn, R. Herr, and D. Hoge, "Stability of Lithiated Carbon Electrodes in Organic Electrolytes," Journal of Power Sources, vol. 44, pp. 409-412, Apr 15 1993.
    [45] E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner, et al., "A Rechargeable Li/Lixcoo2 Cell," Journal of Power Sources, vol. 21, pp. 25-31, Aug 1987.
    [46] Nexeon technology overview.
    [47] C. J. Wen and R. A. Huggins, "Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System," Journal of Solid State Chemistry, vol. 37, pp. 271-278, 1981.
    [48] B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices," Science, vol. 334, pp. 928-935, Nov 18 2011.
    [49] K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with high power and high capacity for rechargeable lithium batteries," Science, vol. 311, pp. 977-980, Feb 17 2006.
    [50] C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, et al., "High-performance lithium battery anodes using silicon nanowires," Nature Nanotechnology, vol. 3, pp. 31-35, Jan 2008.
    [51] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, et al., "Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control," Nature Nanotechnology, vol. 7, pp. 309-314, May 2012.
    [52] D. L. Ma, Z. Y. Cao, and A. M. Hu, "Si-Based Anode Materials for Li-Ion Batteries: A Mini Review," Nano-Micro Letters, vol. 6, pp. 347-358, Oct 2014.
    [53] P. Thounthong, V. Chunkag, P. Sethakul, B. Davat, and M. Hinaje, "Comparative Study of Fuel-Cell Vehicle Hybridization with Battery or Supercapacitor Storage Device," Ieee Transactions on Vehicular Technology, vol. 58, pp. 3892-3904, Oct 2009.
    [54] A. P. Cohn, W. R. Erwin, K. Share, L. Oakes, A. S. Westover, R. E. Carter, et al., "All Silicon Electrode Photocapacitor for Integrated Energy Storage and Conversion," Nano Letters, vol. 15, pp. 2727-2731, Apr 2015.
    [55] D. B. J. W. Long, T. Brousse et al. 2011, 36, 513., presented at the MRS Bull, 2011.
    [56] Q. Wang, Z. H. Wen, and J. H. Li, "A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode," Advanced Functional Materials, vol. 16, pp. 2141-2146, Oct 20 2006.
    [57] Y. Jiao, Y. Liu, B. S. Yin, S. W. Zhang, F. Y. Qu, and X. Wu, "Hybrid alpha-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts," Nano Energy, vol. 10, pp. 90-98, Nov 2014.
    [58] R. Yi, S. R. Chen, J. X. Song, M. L. Gordin, A. Manivannan, and D. H. Wang, "High-Performance Hybrid Supercapacitor Enabled by a High-Rate Si-based Anode," Advanced Functional Materials, vol. 24, pp. 7433-7439, Dec 17 2014.
    [59] R. M. Tiggelaar, V. Verdoold, H. Eghbali, G. Desmet, and J. G. E. Gardeniers, "Characterization of porous silicon integrated in liquid chromatography chips," Lab on a Chip, vol. 9, pp. 456-463, 2009.
    [60] A. Halimaoui, "Determination of the Specific Surface-Area of Porous Silicon from Its Etch Rate in Hf Solutions," Surface Science, vol. 306, pp. L550-L554, Apr 1 1994.
    [61] J. P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro, et al., "Selective Ultrathin Carbon Sheath on Porous Silicon Nanowires: Materials for Extremely High Energy Density Planar Micro-Supercapacitors," Nano Letters, vol. 14, pp. 1843-1847, Apr 2014.
    [62] C. Chiappini, X. W. Liu, J. R. Fakhoury, and M. Ferrari, "Biodegradable Porous Silicon Barcode Nanowires with Defined Geometry," Advanced Functional Materials, vol. 20, pp. 2231-2239, Jul 23 2010.
    [63] M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, "25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries," Advanced Materials, vol. 25, pp. 4966-4984, Sep 2013.
    [64] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, pp. 3315-3321, Jun 2012.
    [65] M. Y. Ge, J. P. Rong, X. Fang, and C. W. Zhou, "Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life," Nano Letters, vol. 12, pp. 2318-2323, May 2012.
    [66] X. X. Wang, J. N. Wang, H. Chang, and Y. F. Zhang, "Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries," Advanced Functional Materials, vol. 17, pp. 3613-3618, Nov 23 2007.
    [67] M. Holzapfel, H. Buqa, F. Krumeich, P. Novak, F. M. Petrat, and C. Veit, "Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries," Electrochemical and Solid State Letters, vol. 8, pp. A516-A520, 2005.
    [68] W. C. Yen, Y. Z. Chen, C. H. Yeh, J. H. He, P. W. Chiu, and Y. L. Chueh, "Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization," Scientific Reports, vol. 4, May 9 2014.
    [69] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, Nov 3 2006.
    [70] J. P. Alper, M. Vincent, C. Carraro, and R. Maboudian, "Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor," Applied Physics Letters, vol. 100, Apr 16 2012.
    [71] K. S. Xia, Q. M. Gao, J. H. Jiang, and J. Hu, "Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials," Carbon, vol. 46, pp. 1718-1726, Nov 2008.
    [72] J. P. Alper, M. S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, et al., "Silicon carbide nanowires as highly robust electrodes for micro-supercapacitors," Journal of Power Sources, vol. 230, pp. 298-302, May 15 2013.
    [73] L. Oakes, A. Westover, J. W. Mares, S. Chatterjee, W. R. Erwin, R. Bardhan, et al., "Surface engineered porous silicon for stable, high performance electrochemical supercapacitors," Scientific Reports, vol. 3, Oct 22 2013.
    [74] F. Thissandier, A. Le Comte, O. Crosnier, P. Gentile, G. Bidan, E. Hadji, et al., "Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications," Electrochemistry Communications, vol. 25, pp. 109-111, Nov 2012.
    [75] E. Garnett and P. D. Yang, "Light Trapping in Silicon Nanowire Solar Cells," Nano Letters, vol. 10, pp. 1082-1087, Mar 2010.
    [76] J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, "19.8% efficient "honeycomb'' textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, pp. 1991-1993, Oct 5 1998.
    [77] S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Solar Energy Materials and Solar Cells, vol. 58, pp. 399-409, Aug 1999.
    [78] M. Banerjee, E. Bontempi, A. K. Tyagi, S. Basu, and H. Saha, "Surface analysis of thermally annealed porous silicon," Applied Surface Science, vol. 254, pp. 1837-1841, Jan 15 2008.
    [79] M. Banerjee, E. Bontempi, S. Bhattacharya, S. Maji, S. Basu, and H. Saha, "Thermal annealing of porous silicon to develop a quasi monocrystalline structure," Journal of Materials Science-Materials in Electronics, vol. 20, pp. 305-311, Apr 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE