研究生: |
張原祥 Yuan-Hsiang Chang |
---|---|
論文名稱: |
在空氣及真空中照射加馬射線的聚四甲基一戊烯的非等溫結晶動力學研究 Non-isothermal Crystallization Kinetics of Poly(4-Methyl-1-Pentene) Irradiated by γ-ray in Air and Vacuum |
指導教授: |
李三保
Sanboh Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 129 |
中文關鍵詞: | 聚四甲基一戊烯 、雙峰分離 、熱差分析儀 、非等溫結晶 |
外文關鍵詞: | poly(4-methyl-1-pentene), double peak separation, DSC, non-isothermal crystallization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱差分析儀(Differential Scanning Calorimeter)用來測量在空氣與真空中照射加馬射線的聚四甲基一戊稀的非等溫結晶過程,照射加馬射線有4種劑量率分別是在真空中或空氣中照射100-400 kGy,在測量非等溫結晶的過程時,6種降溫速率2.5, 5, 7.5, 10, 15, 20℃/min 的過程被紀錄下來。在熱差分析儀測量出來的結果中,我們發現了雙峰的存在,表示在結晶的過程中有兩種結晶狀況的可能性,這樣的狀況可能是由聚四甲基一戊稀的螺旋狀的結晶結構所造成。
在我們的研究中,我們試圖將雙峰分離,雙峰的分離我們是使用反高斯函數的分布來模擬結晶的放熱曲線,雙峰代表有兩個放熱的分布。接下來在非等溫結晶的分析上,我們採用兩種的作法,一種將著名的Avrami 方程式應用在非等溫結晶的分析上,另一種是由Ozawa所提出,描述降溫速率與相對結晶間的關係,兩種方式皆可得到n值。活化能的計算是採用Kissinger的方法,實驗得到的結果為活化能隨著劑量增加而減少,第一個峰的活化能大於第二個峰的活化能,並且在空氣中照射的活化能大於在真空中照射的活化能。
Non-isothermal crystallization kinetics of Poly(4-methyl-1-pentene) samples irradiated by γ-ray in air and vacuum with 100-400 kGy was studied using Differential Scanning Calorimeter (DSC). Different cooling rates at 2.5, 5, 7.5, 10, 15 and 20 ℃/min were applied to investigate the exothermic behavior of crystallization. According to the heat flow along the continuous cooling temperature, the heat flow is related to the degree of crystallization. However, we found double peaks in the diagram of the heat flow versus the cooling temperature. Two crystalline processes were expected to coexist. It is possible that the phenomenon comes from the up-down disorder in crystal structure.
In this research, we separated the double peaks by curve fitting. We used the probability density function of the inverse Gaussian distribution to separate two peaks with different parameters. After that, Avrami approach modified by Jeziorny and Ozawa approach were applied to analyze the non-isothermal crystallization kinetics. Generally speaking, the exponent n of Avrami approach is around 1.5~2 for Peak 1 and 1~1.5 for Peak 2 at different cooling rates when TPX samples are irradiated by γ-ray with different doses in air and vacuum. The exponent n of Ozawa approach decreases from 2~3 to 0.5~1 for peak 1 and peak 2 with the decreasing crystallization temperature. The activation energy of non-isothermal crystallization were computed by Kissinger’s approach. The crystallization activation energy for peak 1 decreases from 667.01 KJ/mol to 452.63 KJ/mol and 407.75 KJ/mol with the increasing dose of γ-ray in air and in vacuum, respectively. The crystallization activation energy for peak 2 decreases from 484.18 KJ/mol to 420.97 KJ/mol and to 342.17 KJ/mol with the increasing dose of γ-ray in air and in vacuum, respectively.
1.D. T. Goodhead, “ESR Study of Radiation Damage in TPX Polymer (Poly-4-methylpentene-1)”, J. Polym. Sci. : Part A-2, 9, 999-1024 (1971).
2.Leonardo C. Lopez and Garth L. Wilkes, “Synthesis, Structure, and Properties of Poly(4methyl-1-pentene)”, Rev. Macromol. Chem. Phys. C32(3&4), 301-406 (1992).
3.Claudio De Rosa, Vincenzo Venditto, Gaetano Guerra, and Paolo Corradini, “Crystal structure of syndiotactic poly(4-methyl-1-pentene)”, Polymer, Vol. 36, No. 19, pp. 3619-3624 (1995).
4.Hiroshi Kusanagi, Minoru Takase, Yozo Chatani, and Hiroyuki Tadokoro, “Crystal Structure of Isotactic Poly(4-methyl-1-pentene)”, J. Polym. Sci. : Polym. Phys. Ed., 16, 131-142 (1978).
5.Claudio De Rosa, “Crystal Structure of Form II of Isotactic Poly(4-methyl-1-pentene)”, Macromolecules, 36, 6087-6094 (2003).
6.Glaudio De Rosa, Finizia Auriemma, Anna Borriello, and Paolo Corradini, “Up-down disorder in the crystal structure of form III of isotactic poly(4-methyl-1-pentene)”, Polymer, Vol. 36, No. 25, pp. 4723-4727 (1995).
7.Claudio De Rosa, “Crystal Conformation of Form IV of Isotactic Poly(4-methyl-1-pentene)”, Macromolecules, 32, 935-938 (1999).
8.Gerard Charlet and Geneviėve Delmas, “Modification V of Poly 4-methylpentene-1 from Cyclopentane Solutions and Gels”, Polymer Bulletin, 6, 367-373 (1982).
9.Melvin Avrami, “Kinetics of Phase Change I”, J. Chem. Phys., 7, 1103 (1939).
10.Melvin Avrami, “Kinetics of Phase Change II”, J. Chem. Phys., 8, 212 (1939).
11.Melvin Avrami, “Granulation, Phase Change, and Microstructure”, J. Chem. Phys., 9, 177-190 (1941).
12.X. F. Lu and J. N. Hay, “Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)”, Polymer, 42, 9423-9431 (2001).
13.Andrzej Jeziorny, “Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c.”, Polymer, 19, 1142 (1978).
14.T. Ozawa, “Kinetics of non-isothermal crystallization”, Polymer, 12, 150 (1971).
15.Minying Liu, Qingxiang Zhao, Yudong Wang, Chenggui Zhang, Zhishen Mo, and Shaokui Cao, “Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212”, Polymer, 44, 2537-2545 (2003).
16.G. Z. Papageorgiou and G. P. Karayannidis, “Crystallization and melting behaviors of poly(butylene naphthalene-2,6-dicarboxylate)”, Polymer, 42, 2637-2645 (2001).
17.Leonardo C. Lòpez and Garth L. Wilkes, “Non-isothermal crystallization kinetics of poly(p-phenylene sulphide)”, Polymer, 30, 882 (1989).
18.Yu-Chun Ou, Ma-Yu, and Zhong-Zhen Yu, “Nonisothermal Crystallization Kinetics of In Situ Polyamide-6 Blended with Poly(phenylene oxide)”, J. Appl. Polym. Sci., 73, 767-775 (1999).
19.P. Sajkiewicz, L. Carpaneto, and A. Wasiak, “Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate)”, Polymer, 42, 5365-5370 (2001).
20.Pitt Supaphol, Nujalee Dangseeyun, Phornphon Srimoaon, and Manit Nithitanakul, “Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters”, Thermochimica Acta, 406, 207-220 (2003).
21.P. H. Richardson, R. W. Richards, D. J. Blundell, W. A. MacDonald, and P. Mills, “Differential scanning calorimetry and optical microscopy investigations of the isothermal crystallization of a poly(ethylene oxide)-poly(methyl methacrylate) block copolymer”, Polymer, Vol. 36, No. 16, pp. 3059-3069 (1995).
22.Imogen Foubert, Peter A. Vanrolleghem, and Koen Dewettinck, “A differential scanning calorimetry method to determine the isothermal crystallization kinetics of cocoa butter”, Thermochimica Acta, 400, 131-142 (2003).
23.Jun-Ting Xu, J. Patrick A. Fairclough, Shao-Min Mai, and Anthony J. Ryan, “Isothermal Crystallization Kinetics and Melting Behavior of Poly(oxyethylene)-b-poly(oxybutylene)/Poly(oxybutylene) Blends”. Macromolecules, 35, 6937-6945 (2002).
24.Joe H. Griffith and B. G. Rånby, “Dilatometric Measurements on Poly(4-methyl-1-pentene) Glass and Melt Transition Temperature, Crystallization Rates, and Unusual Density Behavior”. J. Polym. Sci., 44, 369-381 (1960).
25.Y. S. Yadav, P. C. Jain, and V. S. Nanda, “Use of differential scanning calorimetry to study polymer crystallization kinetics with longer half times”, Thermochimica Acta, 71, 313-321 (1983).
26.R. Berlanga, J. Farjas, J. Saurina, and J. J. Suñol, “A modified method for T-CR-T diagram construction”, J. Therm. Analy., 52, 765-772 (1998).
27.J. J. Suñol, J. Farjas, R. Berlanga, and J. Saurina, “Thermal analysis of polyethylene glycol (PEG 4000): T-CR-T diagram construction”, J. Therm. Analy. and Calorimetry, 61, 711-718 (2000).
28.S. Kurajica, A. Bezjak, and E. Tkalčec, “Resolution of overlapping peaks and the determination of kinetic parameters for the crystallization of multicomponent system from DTA or DSC curves: I. Non-isothermal kinetics”, Thermochimica Acta, 288, 123-135 (1996).
29.N. A. Andreucetti, C. Sarmoria, O. A. Curzio, and E. M. Valles, “Effect of the phenolic antioxidants on the structure of gamma-irradiated model polyethylene”, Radiat. Phys. Chem., 52(1-6), 177-182 (1998).
30.Fumio Yoshii, Takashi Sasaki, Keizo Makuuchi, and Naoyuki Tamura, “Durability of Radiation-Sterilized Polymers. I. Estimation of Oxidative Degradation in Polymers by Chemiluminescence”, J. Appl. Polym. Sci., 30, 3339-3346 (1985).
31.C. Y. Shih, Kueir-Rara Lee, and J. Y. Lai, “60Co γ-ray irradiation modified poly(4-methyl-1-pentene) membrane for oxygenator”, Eur. Polym. J., 30(5), 629-634 (1994).
32.S. A. El-Fiki, M. S. Abd El-Wahab, M. El-Sherief, S. A. Nooh, and M. A. El Fiki, “Investigation of the effect of gamma rays on optical properties of polymers”, Radiat. Phys. Chem., 47(5), 761-764 (1996).
33.Homer E. Kissinger, “Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis”, J. Res. of the National Bureau of Standards, 57(4), 2712 (1956).
34.Homer E. Kissinger, “Reaction of Kinetics in Differential Thermal Analysis”, Analytical Chemistry, 29(11), 1702 (1957).
35.Sheng-Hsiang Yang, “The physical and mechanical properties of poly(4-methyl-1-pentene)”, NTHU, Hsinchu, Taiwan (2002).
36.Fu-Wei Lo, “Non-isothermal crystallization kinetics of irradiated poly(4-methyl-1-pentene)”, NTHU, Hsinchu, Taiwan (2005).
37.Raj S. Chhikara and J. Leroy Folks, “The Inverse Gaussian Distribution : Theory, Methodology, and Applications”, Statistics, textbooks and monographs, v. 95 (1989).