簡易檢索 / 詳目顯示

研究生: 張傑雄
論文名稱: 運用外加靜電場的批次微組裝
Batch Micro-assembly using External Electrostatic Field
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 48
中文關鍵詞: 微機電系統微組裝靜電場
外文關鍵詞: MEMS, microassembly, electrostatic field
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電系統(Micro-Electro-Mechanical System,簡稱MEMS)是目前具有發展潛力的研究領域之一。早期MEMS的元件因為其採用半導體整合製程的因素,因此大多是在平面上的二維結構。在1992年微鉸鍊提出後,二維結構透過微鉸鏈的輔助可以翻轉立起在矽基板上而形成三維微結構,從此以後很多三維的微結構被設計並且製作出來。三維的光學微鏡面運用的範圍很廣,其能夠被整合成很多的微光學應用元件或系統,但是這些微鏡面在操作之前必須先將它翻轉立起,並加以固定在某一個角度。以前大多依賴一個操作者透過顯微鏡及微探針來達成這項工作,所以侷限了這個組裝過程必須在實驗室環境下才能完成,並不符合批次製造製程。因此如何將這些三維微鏡面在批次製造後一次翻轉立起在矽基板上便成為這些鏡面製程完成後的一個很重要的問題。
    本文提出以垂直的靜電場來做三維微鏡面及結構的非接觸式組裝。利用摩擦生電所產生的電荷可以累積的特殊物理現象,將蓄存的電荷造成垂直靜電場來當作驅動源翻轉微鏡面離開矽基板。並且根據摩擦生電的理論和高斯定律,估測出所產生的電場及靜電吸引力大小的理論值。最後設計出一套完整的實驗,包含一些基本靜電學所需的物理裝置及用表面微加工所製作出來的三維微結構,用以驗證此方法的可行性以及其應用性,並與理論值做比較,可供未來組裝三維微鏡面及結構的參考。


    第一章 緒論…………………………………………………...1 1.1研究背景及動機………………………………………………..1 1.2文獻回顧………………………………………………………..5 1.3 本文大綱……………………………………………………….9 第二章 靜電組裝實驗理論與分析………………………….12 2.1 靜電組裝實驗原理…………………………………………...12 2.1.1摩擦生電及靜電吸引物理現象.………………………..12 2.1.2摩擦電荷產生模式分析…………………………………13 2.1.3靜電吸引力作用模式分析………………………………15 2.2 MEMCAD有限元素分析模擬……………………………......17 2.2.1電場與結構間距3 mm………………………………….18 2.2.2電場與結構間距2 mm…………………………………..20 第三章 靜電組裝實驗設計………………………………….26 3.1 靜電產生器…………………………………………………...26 3.2 待測三維微鏡面及結構……………………………………...27 3.3 整體實驗架設………………………………………………...28 第四章 微鏡面及結構製程……...…………………………..32 4.1 微鏡面及結構尺寸設計…………………………………….. 32 4.2 製程設計……………………………………………………...34 4.3 微鏡面及結構製程結果……………………………………...37 第五章 實驗及量測結果………….…………………………41 5.1 靜電場電壓量測結果………………………………………..41 5.2微鏡面組裝實驗及靜電吸引力量測實驗實體架設…………44 第六章 結論………………………………………………….45 第七章 未來工作…………………………………………….46 參考文獻……………………………………………………...47

    [1] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated hinges,” Sensors and Actuators A-33 pp. 249-256 1992
    [2] M. -H. Kiang, O. Solgaard ,K. Y. Lau, and R. S. Muller, “High-performance silicon micromachined micromirrors for laser beam scanning and positioning,” Solid-State Sensor and Actuator Workshop Hilton HeadIsland, SC, USA, 1996
    [3] M. -H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic Combdrive-Actuated Micromirrors for Laser-Beam Scanning and Positioning,” IEEE Trans. Journal of Microeletromechanical System Vol. 7,pp. 27-37, 1998
    [4] M. C. Wu, “Micromachining for Optical and Optoelectronic System,” IEEE Trans. Vol. 83, pp. 1883-1856, 1997
    [5] “Assembly of Microsystem,” Keynote Papers of CIRP Vol.49, pp. 35-42 , 2000
    [6] C. -J. Kim, A. I. Pisano, R. S. Muller, “Silicon-Processed Over-hanging Microgripper,” IEEE Trans. Journal of Microeletromechanical System, pp. 31-36 , 1992
    [7] Y. Haddab, N. Chaillet, and A. Bourjault, “A Microgripper Using Smart Piezoelectric Actuators,” IEEE Trans. Journal of Microeletromechanical System , Vol. 7, pp. 659-664 , 2000
    [8] R. S. Muller, K. Y. Lau, “Surface-Micromachined Microoptical Elements and System,” IEEE Trans. , Vol. 86 , No.8 , pp. 1705-1720, 1998
    [9] J. R. Reid, V. M. Bright, and J. T. Bulter, “Automated assembly of flip-up micromirrors,” Sensor and Actuator A-66 , pp. 292-298, 1998
    [10] R. R. A. Syms, “Equilibrium of Hinged and Hingeless Structures
    Rotated Using Surface Tension Force,” IEEE Trans. Journal of Microelectromechanical System ,Vol. 4 , No.4 , pp.448-455, 1995
    [11] P. W. Green, R. R. A. Syms, E. M. Yeatman, “Demonstration of
    Three-Dimensional Microstructure Self-Assembly,” IEEE Trans. Journal of Microelectromechanical System ,Vol. 4 , No.4 , pp.170-176 , 1995
    [12] V. Kaajakari and A. Lal, “Electrostatic Batch Assembly of Surface MEMS Using Ultrasonic Triboelectricity,” IEEE Trans. Journal of Microelectromechanical System, Vol.4 , pp.13-16, 2001
    [13] E. Iwase , S. Takeuchi , and I. Shimoyama “Sequential batch assembly of 3-D microstructures with elastic hinges by a magnetic field,” IEEE Trans. Journal of Microelectromechanical System, pp.188-191, 2002
    [14] K. W. C. Lai , A. P. Hui , and W. J. Li, “Non-contact batch micro-assembly by centrifugal force,” IEEE Trans. Journal of Microelectromechanical System , pp.184-187, 2002
    [15] A. Sulzmann, J. Jacot, “3D Computer Graphics Based Interface to Real Microscopic Worlds for Micro-Robot Telemanipulation and Position Control,” IEEE Trans. ,Vol. 2 , pp. 286-291 , 1995
    [16] H. Benson, “University Physics” revised edition Chapert 22 Electrostatic, WILEY, U.S.A
    [17] W. D. Greason, “Investigation of a test methodology for triboelectrification,” IEEE Trans. Journal of Electrostatics Vol. 49 , pp. 245-256 , 2000
    [18] L. -H. Lee, “Fundamentals of Adehesion” Chapter 8 , 1992 ,
    WILEY, U.S.A.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE