研究生: |
黃郁仁 Huang, Yu-Jen |
---|---|
論文名稱: |
二氧化鈦被覆對304不□鋼在模擬沸水式反應器環境的防蝕效益研究 The Influence of TiO2-coated on the corrosion prevention Behavior of Type 304 Stainless Steels in Simulated Boiling Water Reactor Environments |
指導教授: |
蔡春鴻
Tsai, Chuen-Horng 葉宗洸 Yeh, Tsung-Kuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 159 |
中文關鍵詞: | 奈米光觸媒 、二氧化鈦 、沿晶應力腐蝕龜裂 、Cherenkov輻射 、混合電位理論 、沸水式反應器 、電化學腐蝕電位 、動態電位極化掃描 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
早期奈米光觸媒主要應用於清潔與除汙環境領域。近幾年日本將此光觸媒技術應用於保護核反應器組件,發現可將二氧化鈦被覆在核反應器組件表面(例如304不□鋼)上,用來抑制組件遭受沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)。利用核能電廠運轉時產生Cherenkov輻射,其產生的紫外光可激發屬N型半導體的二氧化鈦產生電子與電洞對,電洞可與水化學環境中的水分子產生氧化的水解反應,本實驗也發現明顯的陽極電流反應,達到類似混合電位理論(Mixed Potential Model, MPM)的效果來抑制金屬腐蝕。運轉中的核能電廠多採用加氫水化學(hydrogen chemistry, HWC)技術,來降低組件材料的電化學腐蝕電位,防制IGSCC的發生。然而HWC在較高注氫量下(高於0.4 ~ 0.6ppm),會伴隨著運轉與停機時輻射劑量增加的副作用。本研究探討新穎的技術來利用二氧化鈦被覆的光觸媒效應,亦能有效降低金屬的腐蝕電位與腐蝕電流密度來抑制在沸水式反應器內部組件遭受IGSCC,同時也可降低在HWC中注氫的需求量。
本研究在模擬沸水式反應器(Boiling Water Reactor, BWRs)水化學環境下,針對不同的溶氧與溶氫條件及紫外光照射前與照射時候,進行電化學腐蝕電位測量(Electrochemical corrosion potential, ECP)與動態電位極化掃描(Electrochemical potentiodynamic polarization),以及在常溫下的靜態交流阻抗分析(EIS),來了解對304不□鋼試片施行銳鈦型二氧化鈦(Anatase)被覆與紫外光照射前與照射時候的電化學特性差異。在電化學分析之前,試片需經過敏化熱處理,接著在高溫純水溶氧濃度300ppb環境下預長氧化膜,此後採用動態循環熱水沉積法(hydrothermal deposition),在三種不同被覆溫度條件下(90 ℃、150 ℃與280 ℃)對預長氧化膜試片進行96小時、粒徑為38 nm的二氧化鈦奈米顆粒被覆處理。在被覆處理前後對試片進行SEM、EDX、FIB、LRS、XRD與XPS表面分析,以及利用感應偶合電漿質譜儀(ICP-MS)的定量分析觀察二氧化鈦被覆量。
結果顯示,二氧化鈦被覆在預長氧化膜試片同時含有α-Fe2O3與Fe3O4的結構,並氧化膜呈現不均勻與不連續分佈。經由抑制性被覆後,由SEM與FIB影像以及EDX分析觀察到二氧化鈦在低溫90℃被覆下試片表面呈少量且不明顯的被覆效果,在150℃被覆下呈均勻分佈,而在高溫280℃被覆下呈現厚薄較不均勻但被覆面積較廣的情形。由ICP-MS分析的結果顯示90℃與150℃被覆下試片TiO2含量皆少於10 μg/cm2,高溫280℃被覆較接近文獻上利用化學注射法(Chemical injection)在相同被覆時間內所得TiO2含量,約22~33 μg/cm2。在Raman光譜與XRD繞射譜圖可發現在高溫280℃被覆後原來使用的銳鈦型(Anatase)二氧化鈦因熱水沉積法高溫高壓的環境而開始轉變成紅金型(Rutile)。另外,經二氧化鈦被覆試片照射UV光(波長250 nm)後,在不同溶氧濃度下的ECP下降程度可達約100 mV左右,而由高溫動態極化掃描的結果可發現被覆試片在照光前與照射時候的結果發現有明顯的水解氧化反應的陽極電流產生,足以證明照光後ECP下降的影響來自於光激發的效果,且腐蝕電流密度在照光時也有減少的趨勢,儘管極化曲線在未照光情形下對被覆二氧化鈦試片與預長氧化膜試片之間並沒有太大的差異,但這些結果仍顯示在高溫溶氧水環境底下,被覆二氧化鈦再結合施加照射UV光處理可以有效地降低304不□鋼的金屬腐蝕速率。
參考文獻
[1] Fredric A. Simonen, Stephen R. Gosselin, “Life Prediction and Monitoring of Nuclear Power Plant Components for Service-Related Degradation” Journal of Pressure Vessel Technology, February 2001, Volume 123, Issue 1, pp. 58-64
[2] M. Shindo et al, Department of Materials Science and Engineering, Japan Atomic Energy Research Institute, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials, 233-237(1996)1393-1396.
[3] J.T. Busby, G.S. Was, E.A. Kenik , “Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels,” Journal of Nuclear Materials, 302 (2002) 20–40
[4] M.A.Al-Anezi, G.S.Frankel and A.K. Agrawal, ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion, Vol.55 No.11 pp.1101-1109.
[5] Arsene S , Bai J.B. , Bompard P. , “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C,” Metallurgical and Materials Transactions A, Volume34, Number 3, 1 March 2003, pp. 553-566.
[6] R. L. Cowan, Nuclear Engineering International, January 1986, p. 26.
[7] R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7 , BNES, Bournemouth England, Oct. 13-17 , 1996 , p. 196.
[8] Chien C. Lin, F. R. Smith, R. L. Cowan, “Effect of Hydrogen Water Chemistry on Radiation Field Buildup in BWRs, ” Nuclear Energy and Design 166 (1996) 31-36.
[9] D. A. Jones, “Principles and Prevention of Corrosion 2nded, ” Prentice Hall, Upper Saddle River, NJ(1996).
[10] P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data” ,CORROSION/99, paper no. 145, Houston, TX, NACE International, (1999).
[11] 鮮棋振,“金屬腐蝕膜特性探討,”徐氏基金會出版
[12] T. M. Angeliu, P. L. Andresen, F. P. Ford,“Applying slip-oxidationtothe SCC of austenitic materials in BWR/PWR environments. ” CORROSION 98, NACE International, 1998, Paper No. 262.
[13] Materials Science and Engineering-An Introduction, 5th Edition W.D. Callister, Jr., John Wiley Sons, Inc., 1999.
[14] 王佰揚, “不同抑制性被覆條件之敏化304不□鋼在高溫純水環境中的電化學行為研究,” 國立清華大學碩士論文.
[15] 鍾自強〝 焊接奧斯田鐵不锈鋼的問題及解決方法〞機械月刊,第七卷第十期,中華民國七十年10月號
[16] F.P. Ford , P.L. Andresen, “Corrosion in Nuclear Systems : Environment Assisted Cracking in Light Water Reactors,” in Corrosion Mechanisms , eds. P. Marcus. J. Ouder (New York, NY: Marcel Dekker , 1994 ). pp.501-546
[17] Kazushige ISHIDA et al., “Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation”, Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 43, No. 3, p. 242–254 (2006)
[18] D. D. Macdonald, "Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors," Corrosion, Vol. 48, No. 3 p.194-205 (1992).
[19] Herbert H. Uhlig & R. Winston Revie , Corrosion and Corrosion Control, Chapter 7.
[20] 簡源進, “氧化鋯被覆與不同304不□鋼氧化膜對於溶氫與溶氧在模擬沸水式反應器環境中的電化學特性影響研究,” 國立清華大學碩士論文.
[21] Y. Fukaya, M. Akashi, “Photoelectrochemical Protection of Stainless Alloys in BWR Primary Coolant Environment” Proc. 10th Int. Symp. on Environment Degradation of Materials in Nuclear Power Systems –Water Reactors, (2002).
[22] S. Uchida et al., “Road Maps on Research and Development Plans for Water Chemistry of Nuclear Power Systems in Japan”, International Conference on Water Chemistry of Nuclear Reactor Systems, Germany, 2008
[23] Tsung-Kuang Yeh and Fang Chu, “An Improved Model for Assessing the Effectiveness of Hydrogen Water Chemistry in Boiling Water Reactors,” Nuclear Science and Engineering, 139, (2001) 221-233.
[24] L. F. Lin, C. Y. Chao, and D. D. Macdonald, “ A Point Defect Model for Anodic Passive Films,” J. Electrochem. Soc, Vol.128, No.6,June 1981.
[25] D. D. Macdonald et al., "Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments," Corrosion, Vol. 52, p. 768-785 (1996).
[26] B. Stellwag, M. Lasch, and U. Staudt ,”Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants ," 1998 JAIF Conference, p186-193.
[27] R.L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry”, Nuclear Energy, 36, No.4, p.257, 1997.
[28] C. C. Lin, R.L. Cowan, “Effects of hydrogen water chemistry on radiation field buildup in BWRs”, Nuclear Energy and Design 166(1996)31-36
[29] Y.J. Kim, P. L. Andresen, ” Transformation Kinetics of Oxide Formed on Noble Metal-Treated Type 304 Stainless Steel in 288°C Water”, Corrosion, Vol. 59, No.6, p. 511-519 (2003).
[30] S. Hettiarachchi, R.J. Law, T.P. DiaZ, R.L. Cowan, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internal,” 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, August 1014, p.535(1997)
[31] Tsung-Kuang YEH , Digby D. MACDONALD, “The Efficiency of Noble Metals in Reducing the Corrosion Potential in the Primary Coolant Circuits of Boiling Water Reactors Operating under Hydrogen Water Chemistry Operation,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.10, p.1228-1236(2006).
[32] R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, GA, October 1-3, 1997, EPRI.
[33] Dibyendu Ganguli and Debtosh Kundu, Central Glass and Ceramic Research Institute, India, “Preparation of amorphous ZrO2 coatings form metal-organic solutions,” Journal of Materials Science Letters, 3(1984)503-504.
[34] Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," Corrosion, Vol. 54, No.12, p. 1012-1017 (1998).
[35] X. Zhou, I. Balachov and D. D. Macdonald, ”The Effect of Dielectric Coatings on IGSCC in Sensitized Type 304 SS in High Temperature Dilute Sodium Sulfate Solution, ”Corrosion Science. Vol.40 No.8 pp. 1349-1362.
[36] Z. F. Zhou, E. Chalkova, S. N. Lvov, P. Chou, R. Pathania , ”Development of a hydrothermal deposition for applying zirconia coationgs on BWR materials for IGSCC mitigation, ” Corrosion Science 49 (2007) 830-843.
[37] Tsung-Kuang YEH1, Ming-Yong LEE and Chuen-Horng TSAI, ” Intergranular Stress Corrosion Cracking of Type 304 Stainless Steels Treated with Inhibitive Chemicals in Simulated Boiling Water Reactor Environments, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.39, No.5, p.531-539(2002).
[38] Tsung-Kuang YEH, Chang-Tong LIU and Chuen-Horng TSAI, ” The Influence of ZrO2 Treatment on the Electrochemical Behavior of Oxygen and Hydrogen on Type 304 Stainless Steels in High Temperature Water, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.9, p.805-815(2005).
[39] Tsung-Kuang YEH, Chuen-Horng TSAI and Yu-Hsiang CHENG, ” The Influence of Dissolved Hydrogen on the Corrosion of Type 304 Stainless Steels Treated with Inhibitive Chemicals in High Temperature Pure Water, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.5, p.462-469(2005).
[40] Tsung-Kuang Yeh, Yuan-Chin Chien, Bai-Young Wang, Chuen-Horng Tsai, ” Electrochemical Characteristics of Zirconium Oxide Treated Type 304 Stainless Steels of Different Surface Oxide Structures in High Temperature Water,” Corrosion Science (2008)
[41] M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” Journal of Non-Crystalline Solids 147&148(1992)813-819.
[42] Z. F. Zhou et al, “ Optimization of Zirconium Oxide Coating Technology to Mitigate IGSCC in BWRs,” Final Report , BWRVIP-109, EPRI , November, 2002.
[43] B. Stellwag and R. Kilian, Siemens Nuclear Power GmbH U.Staudt, VGB Germany “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants,” 3rd Workshop on LWR Coolant Water Radiolysis and Electrochemistry.
[44] Z. F. Zhou et al, “Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation,” Corrosion Science 49 (2007) 830-843
[45] A. Fujishima、K. Honda, Nature, 37, 238 (1972).
[46] Y. Paz, Z. Lou, L. Rabenberg, and A. Heller, J. Mater. Res., 10, 2842 (1995).
[47] Y. Ohko, S. Saitoh, T. Tatsuma, and A. Fujishima, J. Electrochem. Soc., 148, B24 (2001).
[48] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature (London), 388, 431 (1997).
[49] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater. (Weinheim, Ger.), 10, 135 (1998).
[50] K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Environ. Sci. Technol.,
32, 726 (1998).
[51] P.-C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, Appl. Environ. Microbiol., 65, 4094 (1999).
[52] J. Peral, X. Domenech, and D. F. Ollis, J. Chem. Technol. Biotechnol., 70, 117(1997).
[53] J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, and M. Rouse, Appl. Catal., B, 17, 25 (1998).
[54] C. Renz, Z. Anorg. Chem., 110, 104 (1920); C. Renz, Helv. Chim. Acta, 4, 961 (1921)
[55] J. C. Hudson and J. F. Stanner, J. Iron Steel Inst., 175, 381 (1953).; W. Feitknecht, Chem. Ind., 1102 (1959).; J. E. M. Mayne, Br. Corros. J., 5, 106 (1970)
[56] J. Yuan and S. Tsujikawa, J. Electrochem. Soc., 142, 3444 (1995).
[57] T. Konishi and S. Tsujikawa, Zairyo-to-Kankyo, 44, 534 (1995).
[58] J. Huang, T. Shinohara, and S. Tsujikawa, Zairyo-to-Kankyo, 44, 651 (1997).
[59] G. X. Shen, Y. C. Chen, C. J. Lin, Thin Solid Films, 489 (2005) 130-136
[60] J. Li, H. Yun, and C. J. Lin, Journal of The Electrochemical Society, 154 (11) C631-C636 (2007)
[61] Y. Ohko, S. Saitoh, T. Tatsuma, and Akira Fujishima, Journal of The Electrochemical Society, 148 (1) B24-B28 (2001)
[62] Y.J. Kim, P.L. Andresen, Corrosion, 56 (2000): p. 1242.
[63] Masato Okamura et al. “Corrosion Mitigation of BWR Structural Materials by the Photoelectric Methods with TiO2 -Laboratory Experiments of TiO2 Effect on ECP Behavior and Materials Integrity-”, ENVIRONMENTAL DEGRADATION OF MATERIALS IN NUCLEAR SYSTEMS-WATER REACTORS (2005).
[64] K.Takamori et. al, “Corrosion Mitigation of BWR Structural Materials by the Photoelectric Method with TiO2 - A SCC Mitigation Technique and its Feasibility Evaluation -, “12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, TMS 2005
[65] K.Takamori et. al, “DEVELOPMENT OF BWR COMPONENTS SCC MITIGATION METHOD BY THE TiO2 TREATING TECHNIQUE“, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, British Columbia, (2007)
[66] M. Okamura et al., “SCC Mitigation Method of BWR Structural materials by TiO2 technique” Proc. Symposium on Water Chemistry and Corrosion of Nuclear Power Plants in Asia, Taipei, Taiwan, September 26-28 p.117 (2007)
[67] H. Kawakami et al., Journal of The Electrochemical Society, 155 (2) C62-C68 (2008)
[68] C. X. Shan, X. Hou, K.-L. Choy, Surface & Coatings Technology, 202 (2008) 2399–2402
[69] P. P. TrzaskomaPaulette, et. al., J. Electrochem. Soc., Vol. 144, No. 4, (1997) 1307-1310.
[70] J. Gluszek, et. al., Biomoteriols, 18 (1997) 789-794.
[71] Y. J. Kim, et. al., “Dielectric Coating for Life Extension of BWR Components,” 11th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, (2003).
[72] M. Okamura et al., “Development of SCC Mitigation Method of BWR Structural Materials by TiO2”, International Conference on Water Chemistry of Nuclear Reactor Systems, Germany, 2008
[73] S. Yamamoto et al., “Co-60 deposition suppression by TiO2 treatment”, International Conference on Water Chemistry of Nuclear Reactor Systems, Germany, 2008
[74] Kaesche, H., Die Korrosion der Metalle: Phys-Chem. Prinzipien une aktuelle Probleme, 3rd edn. Springer-Verlag, Berlin, 1990.
[75] Sato, N. and Okamoto, G. , Electrochemical Passivation of Metals, in Comprehensive Treatise of Electrochemistry, Vol. 4, Electrochemical Materials Science, ed. New York and London, 1981, pp. 193-245.
[76] McBee, C.L. and Kruger, J. Electrochim. Acta, 1972, 17, 1337-1341
[77] Winkler, R., Htittner, F. and Michel, F. VGB Kraftwerkstechnik, 1989, 69, 527-531.
[78] Winkler, R. and Lehmann, H. VGB Kraftwerkstechnik, 1985, 65,421426
[79] Asakura, Y. et al. Corrosion NACE, 1989, 45, 119-124.
[80] Y.J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288°C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide”, Corrosion, Vol. 55, No.1, January 1999.
[81] Young-Jin Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288°C Water” International Water Chemistry Conference, San Francisco, October 2004.
[82] S. Uchida et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless in High Temperature Water, (V) Characterization of Oxide Film on Stainless Steel by multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.39, No.11, p.1199-1206(2002).
[83] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (IV) Determination of Oxide Film Properties with Multilateral Surface Analyses ,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.2, p.233-241(2005).
[84] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.8, p.884-895(2006).
[85] B. Stellwag, “The Mechanism of Oxide Film Formation on Austenitic Stainless Steels in High Temperature Water,” Corrosion Science, Vol. 40, No. 2, p. 337 (1998).
[86] Lister, D.H., Davidson, R.D. and McAlpine, E. Corros. Sci., 1987, 27, 113-140.
[87] Robertson, Corrosion Science, Vol.29, p.1275-1291, 1989.
[88] C.S. Kumai and T.M. Devine, “Oxidation of Iron in 288°C, Oxygen-Containing Water”, Corrosion, Vol. 61, No. 3, 2005.
[89]B.Beverskog, “Pourbaix Diagrams for the Ternary System of Iron-Chromium-Nickel,” Corrosion, Vol. 55, No.11, November 1999.
[90] Yoichi Wada et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (IV) Effects of Oxide Film on Electrochemical Corrosion Potential,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.38, No.3, p.183-192(2001).
[91] Y. J. Kim, “In-Situ Electrochemical Impedance Measurement of Oxide Film on Type 304 Stainless Steel in High Temperature Water,” Corrosion, Vol. 56, No.4, April 2000.
[92] P. Jayaweeraa, S. Hettiarachchi,“Determination of the high temperature zeta potential and pH of zero charge of some transition metal oxides”Colloids trnd Swfaces A: Physicochemical and Engineering Aspects, 85 (1994) 19-27
[93] Z. F. Zhou et al, “Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation,” Corrosion Science 49 (2007) 830-843
[94] E. Sikora. M. W. Balmas. D. D. Macdonald and R.C. Alkire, “THE PHOTO-INHIBITION OF LOCALIZED CORROSION ON STAINLESS STEEL IN NEUTRAL CHLORIDE SOLUTION” Corros. Sci. 38, 97 (1996).
[95] C. B. Breslin, D. D. Macdonald, Elzbieta Sikora and Janusz Sikora, “Photo-inhibition of pitting corrosion on types 304 and 316 stainless steels in chloride-containing solutions,” Elecmchimica AC/U, Vol. 42, No. 1, pp. 137-144, 1997.
[96] C. B. Breslin, D. D. Macdonald, Elzbieta Sikora and Janusz Sikora, “Influence of uv light on the passive behaviour of SS316-effect of prior illumination,” EIecfrochimico Acta, Vol. 42, No. I, pp. 127-136, 1997
[97] D. D. Macdonald, J. Electrochem. Soc. 139, 3434 (1992).
[98] S. Fujimoto, T. Yamada and T. Shibata, “Improvement of pitting corrosion resistance of type 304 stainless steel by modification of passive film with ultraviolet light irradiation,” J. Electrochem. Soc. 145, (1998).
[99] 余佳銘, “不同加鋅處理條件之敏化304不□鋼在模擬沸水式反應器環境中的電化學特性研究,” 國立清華大學碩士論文.
[100] 吳柏毅, “高溫純水中過氧化氫於氧化鋯被覆304不□鋼表面之電化學行為分析,” 國立清華大學碩士論文.