簡易檢索 / 詳目顯示

研究生: 張雅慧
論文名稱: 雷射直寫鈀觸媒於無電鍍銅沉積之應用
Formation of Pd Catalyst by Laser Irradiation for Electroless Copper Deposition
指導教授: 王詠雲
Yung-Yun Wang
萬其超
Chi-Chao Wan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 76
中文關鍵詞: 雷射直寫裂解機制無電鍍銅二步驟法Q-開關Nd: YAG 雷射
外文關鍵詞: laser direct-writing, decomposition mechanism, electroless copper, two-step deposition method, Q-switched Nd: YAG laser
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 文獻中提及利用雷射誘導醋酸鈀的裂解反應乃使用有毒的氯仿作為溶劑。於本論文,我們選擇丙酮作為取代溶劑,乃因其與醋酸鈀有高的相容性,且其本身具有低沸點的特性。因此,本實驗改善雷射直寫製程,利用二倍頻Q-開關的Nd:YAG 雷射於塗布有固態醋酸鈀膜/丙酮的PI 基板上進行反應。
    從UV-vis 光譜及非熱光源的實驗結果證實醋酸鈀的裂解機制乃為熱裂解程序。評斷此製程的優劣標準之一是當酸鈀膜進行熱裂解時,如何有效的控制線路大小。事實上,橫向之解析度不佳的問題可藉由擴束光的直徑大小解決。在光路設計中引進適當的望遠鏡透鏡系統而可獲得約25μm寬的鈀線.
    由X 光電子能譜儀觀察得知,醋酸鈀膜經雷射直寫後會在直寫區產生純鈀金屬及部分還原態的醋酸鈀。經10 分鐘無電鍍沈積後,於不同雷射能量下沈積除來的鈀線皆被增厚約至280nm 高。此間接證明部分還原態的鈀可被無電鍍槽液進一步還原成具有催化活性的鈀觸媒。
    關於銅導線的性質探討,我們利用EDX 檢測的銅線組成,並利用兩點探針分析銅線的電阻率。結果發現約有高達95wt%含量的銅金屬。而其電阻率可低至2-5μΩ-cm。


    Previous literature regarding laser process inducing the decomposition of thin palladium acetate layer utilized toxic chloroform as the solvent. In this study, we chose acetone instead of toxic chloroform due to its high
    compatibility with palladium acetate and low boiling point. Therefore, an improved technique of second harmonic Q-switched Nd:YAG laser direct writing from solid film of palladium acetate/acetone on PI substrates was developed in this study.
    The results of UV-vis spectra and non-thermal light sources indicate that the decomposition mechanism of palladium acetate is dominated by pyrolytic process. Therefore, a critical criterion of this process is the dimension control by pyrolytic decomposition of the palladium acetate layer. Indeed, the poor lateral resolution can be improved by introducing an appropriate telescopic system into the optical design. Eventually, palladium pattern of 25μm in width has been fabricated.
    In addition, the result of x-ray photoelectron spectroscopy (XPS) revealthat pure Pd metal together with partial reduction of palladium acetate (Pdx) was both generated on the irradiated region after laser direct-writing. Copper lines of constant 280nm in thickness are achievable under different laser energies after electroless copper deposition for 10 minutes. The constant thickness implies that partial reduction of palladium acetate (Pdx) can be reduced to catalytic Pd metal in subsequent electroless copper bath.
    As for examining the quality of the deposited copper wires, energy dispersive x-ray spectroscopy (EDX) and two-point probe were employed to analyze the elemental composition and the resistivity of the deposited copper
    wires, respectively. The result of EDX demonstrates that the copper content could up to 95wt%. Moreover, the resistivity of copper wires can be as low as 2-5μΩ-cm.

    誌謝辭--------------------------------------------------- Ⅰ Abstract ------------------------------------------------ Ⅱ 摘要----------------------------------------------------- Ⅳ Table of Contents --------------------------------------- Ⅴ List of Figures ----------------------------------------- Ⅷ List of Tables ------------------------------------------XII Abbreviations-------------------------------------------XIII Chapter 1 Introduction.................................... 1 1.1Introduction............................................1 1.2 Decomposition Mechanism of Laser Direct-Writing........2 1.3 Types of Lasers .......................................5 1.3.1 Nd:YAG Laser ........................................5 1.3.2 Ar Ion Laser ........................................6 1.3.3 Excimer Laser .......................................6 1.4 Intensity Profile of Laser ............................7 Chapter 2 Literature Review .............................. 9 2.1 LCVD (Laser-Induced Chemical Vapor Deposition).........9 2.2 LCLD (Laser-Induced Chemical Liquid Deposition).......12 2.3 LCSD (Laser-Induced Chemical Solid Deposition) .......15 2.3.1 The Advantages of LCSD .............................17 2.3.2 Requirements of Precursors .........................19 2.3.3 Effects of Laser Parameters ........................20 2.3.4 The Limitations of LCSD ............................22 2.3.5 Two-Step Deposition Method .........................23 2.3.5.1 Electroless Copper ...............................24 2.3.5.2 Precursors for Palladium Acetate /Chloroform Systems...................................................25 2.4 The Objectives of This Research ......................26 Chapter 3 Experiment .................................... 28 3.1 Materials ............................................28 3.2 Two-Step Copper Deposition............................28 3.2.1 Procedures of Laser-Induced Palladium Deposition....29 3.2.2 Electroless Copper on Top of Palladium Pattern .....29 3.3 The Settings of Laser Apparatus ......................30 3.4 Characterization and measurement .....................31 3.4.1 Ultraviolet -Visible Absorption Spectrometry (UV-vis)......................................................31 3.4.2 Thermal Analysis ...................................32 3.4.3 Surface Morphology and Composition Analysis ........33 3.4.4 XPS Analysis .......................................35 Chapter 4 Results and Discussions........................ 36 4.1 Decomposition Mechanism of [Pd (OAc)2]3 ..............36 4.2 Simulation of the Laser Direct-Writing Process .......42 4.3 Investigation of Laser Direct-Writing Process.........43 4.3.1 The Effect of Laser Energy..........................43 4.3.2 The Performance of Linewidth .......................47 4.4 XPS Spectra of Pd Compounds ..........................51 4.5 The Performance of Electroless Copper ................56 4.5.1 Lineshape and Linewidth of Copper Lines.............56 4.5.2 Morphology of Copper Lines..........................58 4.5.3 The Thickness of Copper Lines ......................60 4.5.4 The Electrical Property of Copper Lines ............61 4.5.5 The Purity of Copper Lines..........................62 4.6 Optical System........................................63 4.6.1 Diffraction Phenomenon..............................65 4.6.2 Achievement of Narrow Copper Lines .................67 Chapter 5 Conclusions.................................... 69 Chapter 6 Suggestion for Future Work .................... 71 Chapter 7 References..................................... 73

    73
    1. 劉尤媚, 產經資訊, 20, 38(2004).
    2. 劉敬偉,曾曉雁,激光雜誌,22(6),15(2001).
    3. Matthias Geissler and Younan Xia, Advanced Materials, 16, 1249(2004).
    4. K. G. Ibbs and R. M. Osgood, Laser Chemical Processing for Microelectronics, Cambridge university press, (1989).
    5. P. Hess, Photoacoustic, Photothermal and Photochemical Process at Surface and in Thin Films, Springer-Verlag Berlin Heidelberg, Ch1 (1989).
    6. D. Bauerle, Laser Processing and Chemistry, Springer-Verlag Berlin Heidelberg, Ch. 2 and 28 (1996).
    7. Van Hecke, Gerald R. Karukstis, A guide to laser in chemistry, Boston, Mass. Jones & Bartlett Publishers, Inc., Ch.4 (1998).
    8. J. Lawrence and L. Li, Laser modification of the wettability characteristics of engineering materials, Professional Engineering Publishing, Ch.1(2001).
    9. R. J. Von Gutfeld, E. E. Tynan, R. L. Melcher and S. E. Blum, Applied Physics Letters, 35(9), 651(1979).
    10. Simeon M. Metev and Vadim P. Veiko, Laser-assisted microtechnology, Springer-Verlag Berlin Heidelberg, Ch.7(1998).
    11. H.S. Cole, Y.S. Liu, J.W. Rose and R. Guida, Applied physics letters,53(21), 2111(1988).
    12. K. Kordas, K. Bali , S. Leppavuori, A. Uusimaki, L. Nanai, Applied Surface Science, 152, 149 (1999).
    13. K. Kordas, K. Bali, S. Leppavuori, A. Uusimaki, and L. Nanai, Applied Surface Science, 154-155, 399 (2000).
    14. Wang Xuhong, Yu Zuzhan, Zhao Guoqing and Zhou Zhuying, Journal of Fudan University (Natural Science), 33, 7(1994)
    15. J. Cl. Puippe, R. E. Acosta and R. J. von Gutfeld, Journal of Electrochemical Society, 128(12), 2539(1981).
    16. 蕭銘證,『雷射增強銅的電極反應程序之研究』,博士論文,清華大學化學工程研究所,1980。
    17. K. Kordas, S. Leppavuori, A. Uusimaki, T. F. George, L. Nanai, R. Vajtao, K. Bali and J.Bekesi, Thin Solid Film, 384, 185(2001).
    18. R. B. Gerassimov, S. M. Metev and S. K. Savtchenko, IEEE XⅡth International Quantum Electron Conference, 266(1982).
    19. Hilmar Esrom and Ulrich Kogelschatz, Thin solid film, 218, 231(1992).
    20. M. E. Gross, Chemtronics, 4, 197 (1989).
    21. K. W. Beeson and N. S. Clements, Applied Physics letters, 53(7), 547(1988).
    22. Heinrich G. Müller, Applied physics letters, 56(10), 904(1990).
    23. P. Hoffmann, B. Lecohier, S. Goldoni and H. Van Den Bergh, Applied Surface Science, 43, 54(1989).
    24. M. E. Gross, A. Appelbaum, and K. J. Schnoes, Journal of Applied Physics, 60(2), 529 (1986).
    25. M.E. Gross, A. Appelbaum and P. K. Gallagher, Journal of Applied Physics, 61(4), 1628(1987).
    26. M. E. Gross, G. J. Fisanick, P. K Gallagher, K. J. Schnoses and M. D. Fennell, Applied physics letters, 47(9), 923(1985)
    27. M. E. Gross, W. L. Brown, J. Linnros, L. R. Harriott, K. D. Cummings and H. O. Funsten, Material Research Society Symposia Proceedings, 75,91(1987).
    28. Jose´ Ramo´ n Salgueiro, Vicente Moreno, and Jesu´ s Lin˜ ares, Applied Optics, 41(5), 895(2002)
    29. Heinrich G. Müller, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 16(5), 530(1993).
    30. H. Esrom and G. Wahl, Chemtronics, 4, 216(1989).
    31. Rosario C. Sausa, Arunava Gupta and James R. White, Journal of Electrochemical Society, 134, 2707(1987).
    32. Stphane Evoy, Ricardo Izquierdo, Marie-HC1ne Bernier, Michel Meunier, and Edward Sacher, IEEE Transactions on Components, Packaging and Manufacturing Technology part B, 18(4), 697(1995).
    33. Y. Shacham-Diamand and V. Dubin, Microelectronic Engineering, 33, 47 (1997).
    34. G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, America Electroplaters and Surface Finishers Society, Orlando, Ch. 12 (1990).
    35. Y. S. Liu and H.S. Cole, Chemtronics, 4, 209(1989).
    36. Y. Zhang and M. Stuke, Applied Surface Science, 46, 153(1990).
    37. Douglas A. Skoog, F. James Holler and Timothy A. Nieman, Principle of Instrumental Analysis, Saunders College Publishing, Ch. 13(1998).
    38. Michel E. Brown, Introduction to Thermal Analysis: Techniques and Applications, Boston Kluwer Academic Publishers, Ch. 3 and 4 (2001).
    39. H. Bubert, H. Jenett, Surface and thin film analysis: principles,instrumentation, applications, Wiley-VCH, Ch. 42(2002).
    40. P. K. Gallagher and M. E. Gross, Journal of Thermal analysis, 31, 1231(1986).
    41. 王建,葉勻分,崔啟明,郁祖湛, Journal of Fudan University (Natural Science), 37, 248(1997).
    42. Hou Tee Ng, Veronica Hwei Tien Chew,Mike Foo Chan Loh, Kuang Lee Tan,Lap Chan, and Sam Fong Yau Li, Langmuir, 15, 2425(1999).
    43. John C. Vickerman, Surface Analysis: The principal Technique, John Wiley and Sons, Ch. 3(2003).
    44. Hilmar Esrom, Robert Seebock, Marlene Charbonnier, Maurice Romand, Surface and Coatings Technology, 125, 19 (2000).
    45. J. Li, T.E. Seidel and J.W. Mayer. MRS Bulletin, 19, 15(1994).
    46. http://www.lasurface.com/database/liaisonxps.php.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE