簡易檢索 / 詳目顯示

研究生: 陳俊瑋
Chen, Chun-Wei
論文名稱: 合成硫化鎘菱形十二面晶體與具閃鋅礦結構尺寸可調之奈米晶體並探討其光學尺寸效應
Synthesis of CdS Rhombic Dodecahedra and Size-Tunable CdS Nanocrystals with a Zinc Blende Structure Showing Optical Size Effects
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 楊家銘
Yang, Chia-Min
吳春桂
Wu, Chun-Guey
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 65
中文關鍵詞: 硫化鎘奈米晶體晶體形狀控制晶體尺寸控制光學尺寸效應
外文關鍵詞: cadmium sulfide, nanocrystals, crystal shape control, crystal size control, optical size effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在水相中以醋酸鎘、硫乙醯胺與硝酸成功合成出硫化鎘奈米粒子,所合成出來的菱形十二面體的直徑約為100奈米,該形狀的硫化鎘奈米粒子尚未被國際期刊發表過。我們也以相同的合成手法,透過調整醋酸鎘用量、較少量的硝酸以及較短的反應時間,成功合成出可調控尺寸的硫化鎘奈米粒子,其粒徑分別為27、52、68、81、104、116、130以及164奈米。穿透式電子顯微鏡的鑑定結果確認合成出的硫化鎘菱形十二面體表面暴露的晶面為{110}晶面,而可調控尺寸的硫化鎘奈米粒子大多為多晶結構。此外,我們也深入探討其成核與晶體成長的機制,並以可見光吸收光譜等技術監測反應的過程,藉由了解這些機制,我們得以掌握更多調控晶體尺寸與形狀的因素。我們透過吸收以及放光光譜來量測硫化鎘奈米粒子的光學性質,觀測到不論是吸收還是放光譜帶,都有隨著粒子尺寸的增大而有紅位移的現象,這展示了在量子侷限效應的範疇外,仍能觀測到半導體的光學尺寸效應。最後,我們嘗試建構了一個修正過後的能帶結構圖,用以解釋硫化鎘奈米粒子在光學上的尺寸與晶面效應。


    CdS rhombic dodecahedra with sizes of ~ 100 nm have been synthesized for the first time by heating an aqueous mixture of cadmium acetate, thioacetamide (TAA), and nitric acid. We have also prepared zinc blende CdS nanocrystals with tunable sizes of 27, 52, 68, 81, 104, 116, 130, and 164 nm using the same reaction conditions but varying the cadmium acetate amount, reducing HNO3 amount and shorting the reaction time. TEM characterization confirms the {110} surfaces of CdS rhombic dodecahedra and somewhat polycrystalline CdS nanocrystals. The reaction process has been monitored using UV-vis spectroscopy. By recording the light absorption and emission spectra of these nanocrystals, their absorption and emission bands shift steadily to longer wavelengths, demonstrating again that semiconductor optical size effects are observable far beyond the expected quantum confinement dimensions. A modified band diagram for CdS nanocrystals has been constructed to clarify their optical size and facet effects.

    TABLE OF CONTENTS 論文摘要 I ABSTRACT II TABLE OF CONTENTS III LIST OF FIGURES V LIST OF SCHEMES XII Synthesis of CdS Rhombic Dodecahedra and Size-Tunable CdS Nanocrystals with a Zinc Blende Structure Showing Optical Size Effects 1 Introduction 1 1.1 Cadmium sulfide 6 1.2 Reported synthesis of CdS nanocrystals in organic phase 7 1.3 Reported synthesis of CdS nanocrystals in aqueous phase 10 1.4 Nucleation and crystal growth 13 1.5 Optical properties 14 1.6 Electrical conductivity properties 17 2 Experimental 21 2.1 Reagents 21 2.2 Instrumentation 21 2.3 One-pot synthesis of CdS rhombic dodecahedra (RD) 21 2.4 One-pot synthesis of size-tunable CdS nanocrystals 22 3 Results and discussion 24 3.1 Characterizations of CdS rhombic dodecahedra 24 3.2 Characterizations of size-tunable CdS nanocrystal 29 3.3 Previous hypothesis: reaction rate determines particle size and shape 36 3.4 Hypothesized formation mechanism 37 3.5 The size effect on optical properties 50 4 Conclusion 58 References 59

    References
    1. Huang, M. H.; Rej, S.; Hsu S.-H. Facet-dependent properties of polyhedral nanocrystals. Chem. Commun. 2014, 50, 1634–1644.
    2. Kuo, C.-H.; Huang, M. H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today 2010, 5, 106–116.
    3. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15, 2155−2160.
    4. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261–1267.
    5. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of ultrasmall Cu2O nanocubes and octahedra with tunable sizes for facet-dependent optical property examination. Small 2016, 12, 3530–3534.
    6. Huang, M. H.; Gollapally N.; Chen, H.-S. Facet-dependent electrical, photocatalytic, and optical properties of semiconductor crystals and their implications for applications. ACS Appl. Mater. Interfaces 2018, 10, 4−15.
    7. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of diverse Ag2O crystals and their facet-dependent photocatalytic activity examination. ACS Appl. Mater. Interfaces 2016, 8, 19672−19679.
    8. Lyu, L.-M.; Huang, M. H. Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching. J. Phys. Chem. C 2011, 115, 17768–17773.
    9. Hsieh, M.-S.; Su, H. -J.; Hsieh, P. -L.; Chiang, Y, -W.; Huang, M. H. Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086−39093.
    10. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y. Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of PbS nanocrystals. Chem. Mater. 2016, 28, 1574−1580.
    11. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F. Huang, M. H. Aqueous phase synthesis of size-tunable copper nanocubes for efficient aryl alkyne hydroboration. Chem. Asian J. 2017, 12, 293–297.
    12. Lu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H.-M. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun. 2011, 47, 6763–6783.
    13. Li, J.; Bai, H.; Yi, W.; Liu, J.; Li, Y.; Zhang, Q.; Yang, H.; Xi, G. Synthesis and facet-dependent photocatalytic activity of strontium titanate polyhedron nanocrystals. Nano Res. 2016, 9, 1523–1531.
    14. Zheng, B.; Wang, X.; Liu, C.; Tan, K.; Xie, Z.; Zheng, L. High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy. J. Mater. Chem. A 2013, 1, 12635–12640.
    15. Liu, G.; Sun, C.; Yang, H. G.; Smith, S. C.; Wang, L.; Lu, G. Q.; Cheng, H.-M. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 2010, 46, 755–757.
    16. Lei, W.; Zhang, T.; Gu, L.; Liu, P.; Rodriguez, J. A.; Liu, G.; Liu, M. Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold. ACS Catal. 2015, 5, 4385–4393.
    17. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.
    18. Jin, T.; Fujii, F.; Komai Y.; Seki J.; Seiyama A.; Yoshioka Y. Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging. Int. J. Mol. Sci. 2008, 9, 2044–2061.
    19. Klein, D. L.; Roth, R.; Lim, A. K. L.; McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 1997, 389, 699–701.
    20. Li, F.; Nie, C.; You, L.; Jin, X.; Zhang, Q.; Qin, Y.; Zhao, F.; Song, Y.; Chen, Z.; Li, Q. White light emitting device based on single-phase CdS quantum dots. Nanotechnology 2018, 29, 205701.
    21. Wang, X.; Liu, M.; Zhou, Z.; Guo, L. Toward facet engineering of CdS nanocrystals and their shape-dependent photocatalytic activities. J. Phys. Chem. C 2015, 119, 20555−20560.
    22. Wang, L.-Y.; Zhou, Y.-Y.; Wang, L.; Zhu, C.-Q.; Li, Y.-X.; Gao, F. Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe. Analytica Chimica Acta 2002, 466, 87–92.
    23. Mo, Y.-M.; Tang, Y.; Gao, F.; Yang, J.; Zhang, Y.-M. Synthesis of fluorescent CdS quantum dots of tunable light emission with a new in situ produced capping agent. Ind. Eng. Chem. Res. 2012, 51, 5995−6000.
    24. Ghosh, A.; Paul, S.; Raj, S. Structural phase transformation from wurtzite to zinc-blende in uncapped CdS nanoparticles. Solid State Commun. 2013, 154, 25–29.
    25. Warner, J. H.; Tilley, R. D. Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals. Adv. Mater. 2005, 17, 2997–3001
    26. Saunders, A. E.; Ghezelbash, A.; Sood, P.; Korgel, B. A. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence. Langmuir 2008, 24, 9043–9049.
    27. Voitekhovich, S. V.; Talapin, D. V.; Klinke, C.; Kornowski, A.; Weller, H. T. CdS nanoparticles capped with 1-substituted 5-thiotetrazoles: synthesis, characterization, and thermolysis of the surfactant. Chem. Mater. 2008, 20, 4545–4547.
    28. Wang, C.; Zhang, H.; Lin, Z.; Yao, X.; Lv, N.; Li, M.; Sun, H.; Zhang, J.; Yang, B. Cationic ligand protection: a novel strategy for one-pot preparation of narrow-dispersed aqueous CdS spheres. Langmuir 2009, 25, 10237–10242.
    29. Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L. Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation. APL Mater. 2014, 2, 012104.
    30. Polte, J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm, 2015, 17, 6809–6830.
    31. Newton, J. C.; Ramasamy, K.; Mandal, M.; Joshi, G. K.; Kumbhar, A.; Sardar, R. Through-space charge transfer in rod-like molecules: lessons from theory. J. Phys. Chem. C 2012, 116, 4380–4386.
    32. Ji, X. H.; Song, X. N.; Li, J.; Bai, Y.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction:  the third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.
    33. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmiuler, A.; Weller, H. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665–7673.
    34. Thambidurai, M.; Muthukumarasamy, N.; Agilan, S.; Murugan, N.; Vasantha, S.; Balasundaraprabhu, R.; Senthil, T. S. Semiconductor nanocrystals: structure, properties, and band gap engineering. J. Mater. Sci. 2010, 45, 3254–3258.
    35. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–935.
    36. Zoraya, L. C.; Sotomayor, C. M.; González, G. Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Res. Lett. 2011, 6, 523–535.
    37. Fujimori, A.; Minami, F. Valence-band photoemission and optical absorption in nickel compounds. Physical Review B 1984, 30, 957–960.
    38. Vogel, Y. B.; Zhang, J.; Darwish, N.; Ciampi, S. Switching of current rectification ratios within a single nanocrystal by facet-resolved electrical wiring. ACS Nano 2018, 12, 8071−8080.
    39. Smith, A. M.; Nie, S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.
    40. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, M. H. Aqueous-phase synthesis of size-tunable PbSe nanocubes at room temperature for optical property characterization. Chem. Eur. J. 2019, 25, 367–372.
    41. Wu, J.-K.; Lyu, L.-M.; Liao, C.-W.; Wang, Y.-N.; Huang, M. H. Fast synthesis of PbS nanocrystals in aqueous solution with shape evolution from cubic to octahedral structures and their assembled structures. Chem.–Eur. J. 2012, 18, 14473−14478.
    42. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct synthesis of size-tunable PbS nanocubes and octahedra and the pH effect on crystal shape control. Dalton Trans. 2015, 44, 15088−15094.
    43. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55.
    44. Takiyama, K. Formation and aging of precipitates. Bull. Chem. Soc. Jpn. 1958, 31, 944–950.
    45. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610−7630.
    46. LaMer, V. K. Nucleation in phase transitions. Ind. Eng. Chem. 1952, 44, 1270–1277.
    47. Chávez, M.; Juárez, H.; Pacio, M.; Mathew, X.; Gutiérrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. Optical band gap energy and urbach tail of CdS:Pb2+ thin films. Rev. Mex. Fis. 2016, 62, 124–128.
    48. Huang, M. H. Facet-dependent optical properties of semiconductor nanocrystals. Small 2019, 15, 1804726.

    QR CODE