簡易檢索 / 詳目顯示

研究生: 陳曄泓
Chen, Ye Hong
論文名稱: 考慮自對準雙重圖案之單列標準元件擺置
Single Row Cell Placement Considering Self Aligned Double Patterning
指導教授: 王廷基
Wang, Ting Chi
口試委員: 麥偉基
Mak, Wai Kei
陳宏明
Chen, Hung Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 39
中文關鍵詞: 自對準雙重圖案標準元件擺置
外文關鍵詞: SADP, Self Aligned Double Patterning, Cell Placement
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對先進製程而言,自對準雙重圖案(SADP)已經成為非常有希望的微影技術之一。在自對準雙重圖案中,疊加層違反(overlay violation)對晶片製造是一個十分關鍵的問題,因此如何有效地減少疊加層違反就變的越來越重要了。此外,大部分現有考慮自對準雙重圖案的實體設計研究都集中在佈局分解和繞線上,只有非常少的研究目標是放在擺置階段。但若是我們能在擺置階段時就得到一個對自對準雙重圖案友善的佈局,那麼在後續佈局修改上的工作就能夠大幅度地減少。

    在本篇論文中,我們研究了下面所列出考慮自對準雙重圖案的問題:(1) 可變列寬的單列標準元件細部擺置問題,及(2) 固定列寬的單列標準元件細部擺置問題。在這兩個問題中,疊加層違反都可以透過兩種元件擺置的技術來減少,包括空格插入和元件翻轉。而針對每一個問題,我們都提出了兩個擺置的演算法,第一個演算法只採用了空格插入的技術,而第二個演算法則是同時採用了空格插入和元件翻轉兩種技術。實驗結果顯示我們所提出的演算法皆能有效地減少疊加層違反。


    Self-aligned double patterning (SADP) has become one of the most promising lithography techniques for advanced technology nodes. In SADP, overlay violation is a critical issue for fabrication, and therefore the minimization of overlay violation is getting more important. Most of existing SADP-aware physical design works focus on layout decomposition and routing, while only very few attempts are for placement. But if we can generate an SADP friendly layout in the placement stage, the subsequent layout modification efforts will be much more reduced.

    In this thesis, we study the following SADP-aware problems: (1) single row cell-based detailed placement with variable row width, and (2) single row cell-based detailed placement with fixed row width. In both problems, overlay violation can be reduced by two cell placement techniques: white space insertion and cell flipping. For each problem, we develop two placement algorithms. The first one adopts only the white space insertion technique, and the second one adopts both white space insertion and cell flipping techniques. Experimental results show that our methods can effectively reduce overlay violation.

    Contents 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Self-Aligned Double Patterning . . . . . . . . . . . . . . . . . . . . . 2 1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Review of an SADP Layout Decomposer 7 2.1 Major ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Preliminaries and Problem Formulations 15 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 SADP-aware Single Row Cell Placement Algorithms 18 4.1 Construction of Cell Solution Graph . . . . . . . . . . . . . . . . . . 19 4.2 Construction of Boundary Solution Graph . . . . . . . . . . . . . . . 20 4.3 Single-row Cell Placement with Variable Row Width . . . . . . . . . 24 4.3.1 Algorithm for White Space Insertion . . . . . . . . . . . . . . 24 4.3.2 Algorithm for White Space Insertion and Cell Flipping . . . . 25 4.4 Single-row Cell Placement with Fixed Row Width . . . . . . . . . . . 27 4.4.1 Algorithm for White Space Insertion . . . . . . . . . . . . . . 27 4.4.2 Algorithm for White Space Insertion and Cell Flipping . . . . 30 5 Experimental Results 32 6 Conclusion 36

    Bibliography
    [1] Z. Xiao, Y. Du, H. Tian, and M. D. Wong, "Optimally minimizing overlay violation in self-aligned double patterning decomposition for row-based standard cell layout in polynomial time," in Proceedings of International Conference on Computer-Aided Design, pp. 32-39, 2013.
    [2] Y. Wei and R. L. Brainard, "Advanced processes for 193-nm immersion lithography," in SPIE Press Book, pp. 215|-225, 2009.
    [3] W. Arnold, M. Dusa, and J. Finders, "Manufacturing challenges in double patterning lithography," in Proceedings of International Symposium on Semi-conductor Manufacturing, pp. 283-286, 2006.
    [4] G. E. Bailey, A. Tritchkov, J. W. Park, L. Hong, V. Wiaux, E. Hendrickx, S. Verhaegen, P. Xie, and J. Versluijs, "Double pattern eda solutions for 32nm hp and beyond," in Proceedings of SPIE, vol. 6521, pp. 65211K-1-65211K-12,
    2007.
    [5] A. B. Kahng, C. H. Park, X. Xu, and H. Yao, "Layout decomposition for double patterning lithography," in Proceedings of International Conference on Computer-Aided Design, pp. 465-472, 2008.
    [6] Y. Ma, J. Sweis, H. Yoshida, Y. Wang, J. Kye, and H. J. Levinson, "Self-aligned double patterning (sadp) compliant design flow," in Proceedings of SPIE, vol. 8327, pp. 832706-1-832706-13, 2012.
    [7] K. Oyama, E. Nishimura, M. Kushibiki, K. Hasebe, S. Nakajima, H. Murakami, A. Hara, S. Yamauchi, S. Natori, K. Yabe, et al., "The important challenge to extend spacer dp process towards 22nm and beyond," in Proceedings of SPIE,
    vol. 7639, pp. 763907-1-763907-6, 2010.
    [8] H. Yaegashi, K. Oyama, K. Yabe, S. Yamauchi, A. Hara, and S. Natori, "Novel approaches to implement the self-aligned spacer double-patterning process toward 11-nm node and beyond," in Proceedings of SPIE, vol. 7972, pp. 79720B-1-79720B-7, 2011.
    [9] I. J. Liu, S. Y. Fang, and Y. W. Chang, "Overlay-aware detailed routing for self-aligned double patterning lithography using the cut process," in Proceedings of Design Automation Conference, pp. 1-6, 2014.
    [10] Y. Ban, K. Lucas, and D. Pan, "Flexible 2d layout decomposition framework for spacer-type double pattering lithography," in Proceedings of Design Automation
    Conference, pp. 789-794, 2011.
    [11] H. Zhang, Y. Du, M. D. Wong, and R. Topaloglu, "Self-aligned double patterning decomposition for overlay minimization and hot spot detection," in Proceedings of Design Automation Conference, pp. 71-76, 2011.
    [12] Z. Xiao, Y. Du, H. Zhang, and M. D. Wong, "A polynomial time exact algorithm for self-aligned double patterning layout decomposition," in Proceedings of International Symposium on Physical Design, pp. 17-24, 2012.
    [13] G. Luk-Pat, A. Miloslavsky, B. Painter, L. Lin, P. De Bisschop, and K. Lucas, "Design compliance for spacer is dielectric (sid) patterning," in Proceedings of SPIE, vol. 8326, pp. 83260D-1-83260D-13, 2012.
    [14] J.-R. Gao and D. Z. Pan, "Flexible self-aligned double patterning aware detailed routing with prescribed layout planning," in Proceedings of International Symposium on Physical Design, pp. 25-32, 2012.
    [15] M. Mirsaeedi, J. A. Torres, and M. Anis, "Self-aligned double-patterning (sadp) friendly detailed routing," in Proceedings of SPIE, vol. 7974, pp. 79740O-1-79740O-9, 2011.
    [16] C. Kodama, H. Ichikawa, K. Nakayama, T. Kotani, S. Nojima, S. Mimotogi, S. Miyamoto, and A. Takahashi, "Self-aligned double and quadruple patterningaware grid routing with hotspots control," in Proceedings of Asia and South
    Pacific Design Automation Conference, pp. 267-272, 2013.
    [17] J.-R. Gao, B. Yu, R. Huang, and D. Z. Pan, "Self-aligned double patterning friendly configuration for standard cell library considering placement impact," in Proceedings of SPIE, vol. 8684, pp. 868406-1-868406-10, 2013.
    [18] Q. Li, "Np-completeness result for positive line-by-fill sadp process," in Proceedings of SPIE, vol. 7823, pp. 78233P-1-78233P-11, 2010.
    [19] S. Irnich and G. Desaulniers, "Shortest path problems with resource constraints,"in Column generation, pp. 33-65, 2005.
    [20] M. Ziegelmann, Constrained shortest paths and related problems. PhD thesis,Universitatsbibliothek, 2001.
    [21] \Nangate Open Cell Library." https://projects.si2.org/openeda.si2.org/projects/nangatelib.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE