簡易檢索 / 詳目顯示

研究生: 林佑霖
Yu-Ling Lin
論文名稱: 設計與分析源極耦合低雜訊放大器
The Design and Analysis of LNA with The Source-degenerated Active Inductor
指導教授: 龔正
Jeng Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 63
中文關鍵詞: 主動電感低雜訊放大器
外文關鍵詞: Active inductor, Low noise amplifier
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要描述主動電感在低雜訊放大器前端的應用。藉由使用65奈米標準製程研製主動電感應用於無線通訊系統,我們選擇將主動電感耦合於源極端以抑制雜訊並達到縮小面積的目的。主動電感置放於電路的前端對雜訊的影響最為敏感,因此我們提出一些詳細的分析使雜訊能降到最低又不影響電路的特性。此電路操作在中心頻率5.8GHz的特性如下:小訊號增益為22.3 dB,雜訊指數為3.46 dB,輸入與輸出反射也皆在10dB之下。


    This thesis presents the design of low noise amplifier with source-degenerated active inductor. The active inductor is targeted at RF applications and is implemented with a standard 65-nm CMOS process. This active inductor is effective to act as a source-degenerated inductor as well as to reduce the chip area and to suppress the noise.
    The active inductor naturally contributes some noise to the RF circuits. Here, we provide detailed circuit analyses to reduce the noise without degrading the performance of the LNA. The results show that the LNA operates at 1.2V and 2.5V dual supply voltages can simultaneously achieve the power gain of 22.3 dB and the noise figure of 3.46 dB which are among the best reported values.

    Chinese abstract I English abstract II Acknowledgement III Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis organization 2 Chapter 2 Design and Analysis of Active Inductors 3 2.1 Introduction of passive inductors 4 2.2 Design and analysis of active inductors 5 2.2.1 The basic gyrator cell 6 2.2.2 The regulated cascode active inductor 9 2.2.3 The low voltage architecture 16 Chapter 3 The Design of Low noise amplifier 19 3-1 The fundamentals of RF low noise amplifier 19 3-2 Noise analysis 20 3-2-1 Channel thermal noise 20 3-2-2 Flicker noise 21 3-2-3 Shot Noise 22 3-2-4 Distributed gate resistance noise 23 3-2-5 Induced gate current noise 23 3-3 The analysis of the source-degenerated low noise amplifier 24 3-3-1 Resistive Termination 24 3-3-2 1/gm termination 25 3-3-3 Shunt-Series Feedback 26 3-3-4 Inductive Degeneration 26 3-4 The small signal analysis of the LNA with the source degenerated active inductor 33 3-5 The noise analysis of the active inductor based LNA 37 3-5-1 The noise analysis of the gyrator cell active inductor 37 3-5-2 The noise analysis of the source degenerated active inductor LNA 41 Chapter 4 Results Discussion 45 4-1 The process technology 45 4-2 Design considerations of the active inductor based on LNA 46 4-3 Pre- and post- layout simulation results 47 4-4 The layout of the LNA 52 4-5 Measurement results 52 4-6 The sensitivity of the LNA with the source-degenerated active inductor 56 4-7 Performance summaries 57 Chapter 5 Conclusion 58 Reference 59

    [1] Hara, S.,” Broad-band monolithic microwave active inductor and its application to miniaturized wide-band amplifiers,” IEEE Trans. on Microwave Theory and Techniques, pp.1920 – 1924, Vol. 36, no. 12, Dec. 1988

    [2] A. Thanachayanont and A. Payne, “VHF CMOS integrated active inductor,” Electronic Letters, pp.999-1000, Vol.32, Issue 11, 23 May 1996.

    [3] Bialko, M , “Realizations of Inductive and Capacitive Gyrators,” Circuits Theory, IEEE Transactions on [legacy, pre - 1988], pp.158 – 160, Vol. 15, Issue 2, Jun 1968.

    [4] Weng, R.M.; Kuo, R.C., “An ω0-Q Tunable CMOS Active Inductor for RF Bandpass Filters,” International Symposium on Signals, Systems and Electronics, pp.571 – 574, July 2007.

    [5] S. Lucyszyn, and I. D. Robertson, “Monolithic Narrow-Band Filter Using Ultrahigh-Q Tunable Active Inductor,” IEEE Transaction on Microwave Theory and Techniques, Vol. 42, No. 12 pp. 2617-2622, Dec. 1994.

    [6] M. Ismail, R. Wassenaar, and W. Morrison, “A High-Speed Continuous-Time Bandpass VHF Filter In MOS Technology,” Proc. IEEE ISCAS, Vol. 3, pp. 1761 -1764, April 1991.

    [7] Y. Wu, X. Ding, M. Ismail, and H. Olsson, “Inductorless CMOS RF bandpass filter,” Electron.Lett., Vol. 37, No. 16, pp. 1027-1028, April 2001.

    [8] Y. Wu, X. Ding, M. Ismail, and H. Olsson, “A novel CMOS fully differential inductorless RF bandpass filter,” Proc. IEEE ISCAS, Vol. 4, pp. 149-152, 2000.

    [9] H. H. Hsieh; Y. T. Liao; L. H. Lu, “A Compact Quadrature Hybrid MMIC Using CMOS Active Inductors,” IEEE Transactions on Microwave Theory and Techniques, pp.1098 – 1104, Vol.55, Issue 6, June 2007.

    [10] T.K. Lin, and A.J. Payne, “Design of a Low-Voltage, Low-Power, Wide-Tuning Integrated Oscillator,” IEEE ISCAS, pp. V-629-V-632, June 2000.

    [11] Y. Wu, M. Ismail, and H. Olsson, “CMOS VHF/RF CCO based on active inductors,” Electron.Lett., Vol. 37, No. 8, pp. 472-473, April 2001.

    [12] X. Haiqiao, and S. Rolf, “A Low-Voltage Low-Power CMOS 5-GHz Oscillator Based on Active Inductors,” Proc. IEEE, pp. 231-234, 2002.
    [13] Pascht, A. Fischer, J. Berroth, M., “A CMOS low noise amplifier at 2.4 GHz with active inductor load,” 2001. Digest of Papers. 2001 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 1 – 5, Sep. 2001.

    [14] W. Zhuo, et al., “Programmable Low Noise Amplifier with Active Inductor,” IEEE Conference, pp. IV365-IV368, March 1998.

    [15] A. Thanachayanont, S. Sae Ngow, “Low Voltage High-Q VHF CMOS Transistor-Only Active Inductor,” The 2002 45th Midwest Symposium on Circuits and Systems, Vol. 3, pp. 552 – 555, Aug. 2002.

    [16] A. Thanachayanont., and A. Payne, “A 3-V RF CMOS bandpass amplifier using an active inductor,” Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, ISCAS98, Vol. 1, pp. 440 – 443, May 1998.

    [17] Nair, M.U., Y. Zheng, Y. Lian, “An Active Inductor based Low- Power UWB LNA,” IEEE International Conference on Ultra-Wideband, ICUWB 2007, pp. 813 – 816, Sep. 2007.

    [18] R. M. Weng, P. S. Lin, “A 2V CMOS low noise amplifier with tunable image filtering,” 2004. Proceedings. The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, Vol. 1, pp. 293 – 296, Dec. 2004.

    [19] K. Sharaf, “2-V, 1-GHz CMOS inductorless LNAs with 2-3dB NF,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Vol. 2, pp. 714-717, Aug. 2000.

    [20] Behzard Razavi, “RF Microelectronics,” Pearson Education Taiwan Ltd. 2003.

    [21] 陳煥能, 具抑制頻寬外增益功能之帶斥特性超寬頻低雜訊放大器與2.5–11GHz主動式寬頻匹配超寬頻低雜訊放大器, 交通大學碩士論文, 2006.

    [22] 李家慶, 5.2 GHz 互補式金氧半電晶體低雜訊放大器之設計與分析, 清華大學碩士論文, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE