簡易檢索 / 詳目顯示

研究生: 黃建銘
Huang, Chien-Ming
論文名稱: 電鍍鎳薄膜機械性質之整合測試
Integration Testing of Mechanical Properties of Electroplated Nickel Thin Films
指導教授: 葉銘泉
Yip, Ming-Chuen
方維倫
Fang, Weileun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 楊氏模數電鍍鎳薄膜
外文關鍵詞: Young's modulus, electroplated Nickel, thin film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微小型系統的廣泛使用,運用於微機電系統中之材料機械性質漸趨重要。本論文著重於在微電子以及微機電系統中應用廣泛之電鍍鎳薄膜的機械特性。我們提供了一套方法來對此薄膜進行機械性質之整合測試。此套方法適用於具有大形變量(> 5%)之薄膜並且能夠應用在具有不同厚度的試片上。
    電鍍鎳薄膜之楊氏模數被視為電鍍溫度以及電流密度等製程參數的函數研究。根據這項觀點,我們在不同的電鍍溫度以及電流密度下準備了十三批試片。從1.4 μm 到 11.6 μm的可變沉積厚度中,其標稱尺寸寬度1000 μm,長度4000 μm之鎳薄膜的拉伸試片被用來進行測試。並且,鼓膜試片的直徑為500 和 750 μm。在40℃,0.22 ASD的環境下,4.73 μm厚的鎳薄膜其經由拉伸測試所得到的楊氏模數為39.72 GPa,經由鼓膜測試所得到的為198.78 GPa,經由奈米壓痕測試所得到的為263.48 GPa。在同樣環境下所量測到之降伏強度以及破壞強度分別為964.52 MPa以及1346.93 MPa。


    Mechanical properties of MEMS materials are increasingly important with the wide use of miniaturized systems. The study is focused on the mechanical characterization of electroplated Nickel (Ni) thin films used in microelectronic and micro-electromechanical systems (MEMS) devices. We provide the method of integration testing of mechanical properties of thin films. This method is suitable for thin films with large strain (> 5%) and can be applied to samples with different thicknesses.
    The Young’s modulus of an electroplated Nickel thin film has been investigated as a function of process variables, which are the plating temperature and current density. According to the cognition, we prepare thirteen batch of specimens in different plating temperatures and current densities. With a variable deposition thickness from 1.4 μm to 11.6 μm, tensile specimens of Ni thin film, with a gauge section 1000 μm wide and 4000 μm long were tested. And the diameters of bulge specimens are 500 and 750 μm. The measured Young’s modulus of 4.73 μm thick Ni thin film is about 39.72 GPa by tensile test, 198.78 GPa by bulge test and 263.48 GPa by nanoindentation test at 40℃, 0.22 ASD. In the same condition, the measured yield strength and breaking strength is 964.52 MPa and 1346.93 MPa, respectively.

    目 錄 I 表目錄 IV 圖目錄 V 第一章 緒論 1 1-1 前言 1 1-2 材料測試 2 1-3 研究目標與動機 2 1-4 本論文之架構 3 第二章 文獻回顧 4 2-1 微拉伸測試(Micro-tensile test) 4 2-2 鼓膜測試(Bulge test) 7 2-3 奈米壓痕測試(Nano-indentation test) 8 2-4 曲率量測法(Wafer curvature method) 11 2-5 樑彎曲法(Beam-bending method) 12 2-6 頻率響應法(Frequency resonant method) 12 第三章 量測原理與理論推導 14 3-1 拉伸測試原理 14 3-2 鼓膜測試 17 3-2.1 原理 17 3-2.2 理論推導 17 3-3 奈米壓痕測試 21 3-3.1 原理 21 3-3.2 理論推導 22 第四章 研究方法 26 4-1 電鍍鎳薄膜製程 26 4-1.1 拉伸試片 27 4-1.2 鼓膜試片 27 4-1.3 奈米壓痕試片 28 4-2 儀器設備 28 4-2.1 Instron 8848 萬用拉伸試驗機 28 4-2.2 鼓膜測試系統 29 4-2.3 奈米壓痕試驗機 29 4-2.4電子槍蒸鍍系統 31 4-3 量測方法 32 4-3.1 拉伸測試 32 4-3.2 鼓膜測試 32 4-3.3 奈米壓痕測試 32 第五章 實驗結果與討論 33 5-1 薄膜在不同電鍍參數下之厚度變化情形 33 5-1.1 電鍍時間 33 5-1.2 電流密度 34 5-1.3 溫度 35 5-2 量測方法受厚度效應影響之楊氏模數結果 35 5-2.1 鼓膜測試 35 5-2.2 奈米壓痕測試 36 5-3 量測方法受電鍍參數影響楊氏模數之結果 37 5-3.1 電流密度 37 5-3.2 溫度 38 5-4 鼓膜與奈米壓痕測試量得之楊氏模數比較結果 39 5-5 薄膜硬度在不同電鍍參數以及厚度下之差異 40 5-6 拉伸測試在不同電鍍參數以及厚度下之差異 40 5-6.1 楊氏模數受厚度效應影響之結果 41 5-6.2 楊氏模數受電鍍參數影響之結果 41 5-6.3 不同電鍍參數下之降伏強度與破壞強度 42 第六章 結論與未來展望 43 參考文獻 45 附錄 表 50 附錄 圖 53

    1. C. S. Lin, Y. K. Fang, S. F. Chen, C. Y. Lin, T. H. Chou, S. M. Chen and M. C. Hsieh, “A novel Ni capped high Q copper air gap spiral inductor,” Materials Science in Semiconductor Processing 8, pp. 545-549, 2005.
    2. Hsueh-An Yang, Tsung-Lin Tang, Sheng Ta Lee and Weileun Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” JOURNAL OF MICROELECTRO-
    MECHANICAL SYSTEMS, VOL. 16, NO. 3, 2007.
    3. K. E. Peterson and C. R. Guarnieri, “Young’s modulus measurement of thin films using micromechanics,” Journal of Applied Physic, 50, pp. 6761-6766, 1979.
    4. H. Guckel, T. Randazzo and D. W. Burns, “A simple technique for the determination of mechanical strain in thin films with application to polysilicon,” Journal of Applied Physical, 57, pp. 1671-1675, 1985.
    5. W. N. Sharpe, B. Yuan and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, 1997.
    6. T. Tsuchiya, O. Tabata, J. Sakata and Y. Taga, “Specimen size effect on tensile strength of surface micromachined polycrystalline silicon thin films,” Journal of Microelectro- mechanical Systems, pp. 529-534, 1998.
    7. K. Sato, M. Shikida, M. Yamasaki, T. Yoshioka, “Micro tensile-test system fabricated on a single crystal silicon chip,” Proc. IEEE 9th Int. Workshop on Micro Electro Mechanical Systems (MEMS’96), San Diego, CA, USA, Feb. 11-15, pp. 360-364, 1996.
    8. M. A. Haque and M. T. A. Saif, “Microscale materials testing using MEMS actuators,” Journal of Microelectromechanical Systems, Vol. 10, pp. 146-152, 2001.
    9. M. A. Haque and M. T. A. Saif, “A review of MEMS-Based microscale and nanoscale tensile and bending testing,” Society for experimental mechanics, 43, pp. 248-255, 2003.
    10. Y. Zhu, F. Barthelat, P. E. Labossiere, N. Moldovan and H. D. Espinosa, “Nanoscale Displacement and Strain Measurement,” 2004 SEM Annual Conference, pp. 155-158, 2004.
    11. C. Malhaire, M. Ignat, K. Dogheche, S. Brida, C. Josserond and L. Debove, “Realization of Thin Film Specimens for Micro Tensile Tests,” TRANSDUCERS AND EUROSENSORS’07, pp. 10-14, 2007.
    12. R. Liu, H. Wang, X. Li, G. Ding and C. Yang, “A micro-tensile method for measuring mechanical properties of MEMS materials,” JOURNAL OF MICROMECHANICS AND MICROENGINEER- ING, 18, pp. 7, 2008.
    13. H. Hencky, “Zeitschrift f□r Mathematik und Physik, ” 63, pp. 311-317, 1915.
    14. S. Timoshenko and S. Woinowsky-Krieger, “Theory of Plates and Shells, 2 ed., ” McGraw-Hill, New York, 1959.
    15. P. Lin, “The in-situ measurement of mechanical properties of multi layer coatings., ” Ph.D., Massachusetts Institute of Technology, 1990.
    16. J. J. Vlassak, “New experimental techniques and analysis methods for the study of the mechanical properties of materials in small volumes,” Ph.D. dissertation, Stanford University, 1994.
    17. H. Hertz, “Ueber die beruhrung fester elastischer korper,” J. Reine. Angew. Math., 92, pp. 156-171, 1882.
    18. I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci., 3, 47-57, 1965.
    19. G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res.,7, pp. 613-617, 1992.
    20. R. B. King, “Elastic analysis of some punch problems for layered medium,” Int. J. Solid Struct., 23, pp. 1657-1664, 1987.
    21. S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd Edn. McGraw-Hill, New York, 1970.
    22. P. M. Sargent, “Use of the indentation size effect on microhardness of materials characterization,” Microindentation Techniques in Materials Science and Engineering, STP 889, pp. 160-174, ASTM, Philadelphia, 1986.
    23. P. J. Burnett and D. S. Rickerby, “The mechanical properties of wear resistant coating I:Modeling of hardness behavior,” The Solid films, 148, pp. 41-50, 1987.
    24. P. J. Burnett and D. S. Rickerby, “The mechanical properties of wear resistant coating II:Experimental studies and interpretation of hardness,” The Solid films, 148, pp. 51-65, 1987.
    25. W. C. Oliver and C. J. Mchargue, “Characterizing the hardness and modulus of thin films using mechanical properties microprobe,” Thin Solid Film, Vol. 161, pp. 117-122, 1988.
    26. M. F. Doerner and W. D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” J. Mater. Res., 1, pp. 601-609, 1986.
    27. H. Gao, C. H. Chiu and J. Lee, “Elastic contact versus indentation modeling of multi-layered materials,” Int. J. Solids Structures, 29, 20, pp. 2471-2492, 1992.
    28. T. Ohmura, S. Matsuoka, K. Tanaka, and T. Yoshida, “Nanoindentation load displacement behavior of pure face centered cubic metal thin films on a hard substrate,” The Solid films, 385, pp. 198-204, 2001.
    29. P. J. Burnett and T. F. Page, J. Mater. Res., 19, pp. 845, 1984.
    30. N. X. Randall and C. Julia-Schmutz, “Evaluation of contact area and pile-up during the nanoindentation of soft coatings on hard substrates,” Mat. Res. Soc., Switzerland.
    31. B. Bhushan, “Handbook of Micro/Nanotribology, 2nd ed.,” CRC Press, Boca Raton, 1999.
    32. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proceedings of the Royal Society of London. Series A, Vol. 82, No. 553, pp. 172-175, 1909.
    33. G. L. Pearson, W. T. Read, Jr. and W. L. Feldmann, “Deformation and fracture of small silicon crystals,” Acta. Metal., 5, pp. 181-91, 1957.
    34. C. Serre and A. P. Rodriguez. , “Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope,” Sensors and Actuators, 74, pp. 134-138, 1999.
    35. K. E. Peterson and C. R. Guarnieri, “Young’s modulus measurement of thin films using micromechanics,” Journal of Applied Physic, 50, pp. 6761-6766, 1979.
    36. L. M. Zhang, D. Uttamchandani and B. Culshaw, “Measurement of mechanical properties of silicon microresonators,” Sensors and Actuators A, 29, pp. 79-84, 1991.
    37. H. C. Tsai and W. Fang, “Determining the Poisson’s ratio of thin film materials using resonant method,” Sensors and Actuators A, 103, pp. 377-383, 2003.
    38. J. J. Vlassak and W. D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” J. Mater. Res., 7, pp. 3242-3249, 1992.
    39. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. Vol. 7, pp. 1564-1583, 1992.
    40. Customer care kit by MTS Systems Corporations.
    41. A. C. Fischer-Cripps, “Nanoindentation,” Springer, MECHANICAL ENGINEERING SERIES, pp. 20-30, 2002.
    42. H. D. ESPINOSA and B. C. PROROK, “Size effects on the mechanical behavior of gold thin films,” JOURNAL OF MATERIALS SCIENCE, 38, pp. 4125-4128, 2003.
    43. J. K. Luo, A. J. Flewitt, S. M. Spearing, N. A. Fleck and W. I. Milne, “Young’s modulus of electroplated Ni thin film for MEMS applications,” Materials Letters, 58, pp. 2306-2309, 2004.
    44. T. Fritz, M. Griepentrog, W. Mokwa and U. Schnakenberg, “Determination of Young’s modulus of electroplated nickel,” Electrochimica Acta, 48, pp. 3029-3035, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE