研究生: |
黃恆毅 Huang, Heng-Yi |
---|---|
論文名稱: |
維他命B12做為微生物燃料電池陰極觸媒的研究與應用 The Study of Pyrolyzed-Vitamin B12 as Microbial Fuel Cell Cathode Catalyst |
指導教授: |
周立人
Chou, Li-Jen 陳貴賢 Chen, Kuei-Hsien 林麗瓊 Chen, Li-Chyong |
口試委員: |
陳貴賢
Chen, Kuei-Hsien 林麗瓊 Chen, Li-Chyong 張晃猷 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 微生物 、氧還原 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因最廣泛使用於氧還原催化反應的金屬鉑其昂貴的價格以及在細菌最適合生存的中性環境中其氧還原反應速率下降導致微生物燃料電池仍然無法有效的生產電力。本論文主要是在研究燒結過後的維他命B12在中性溶液中的氧還原活性並且探討燒結過後的維他命B12在微生物燃料電池應用上的可行性。
先將維他命B12與商用碳粉(XC-72)混合在一起並在氮氣環境下進行熱處理,製成微生物燃料電池所需要的陰極觸媒。經由旋轉盤環電極進行氧氣還原活性的測試,發現在熱處理溫度700oC時有最好的觸媒活性然後在和商用白金碳粉以及目前最常使用的非白金觸媒(CoTMPP/C)在中性溶液中進行氧氣還原活性的比較。在氧氣飽和的中性緩衝溶液之中,燒結過後的維他命B12相較於另外兩個觸媒有較佳的氧氣還原活性,而為了探討其氧氣還原反應的機制,也在酸性的溶液中進行了氧氣還原活性的比較。利用XRD、Raman、XANES、EXAFS和TEM去做觸媒在結構和電子組態上的鑑定和分析,以探討熱處理對於觸媒氧氣還原活性的影響。
最後將燒結過後的維他命B12製作成電極並且應用在微生物燃料電池的陰極上,將微生物燃料電池接上一個可變電阻,藉由改變外接的可變電阻量測微生物燃料電池的輸出電壓和電流而得到極化曲線,所量到的最高電池效率為20.3 mW/m2相當於使用商用白金為微生物燃料電池陰極時的1.5倍。
The relatively poor oxygen reduction activity in neutral pH condition and high cost of Pt prohibit the microbial fuel cell for commercial application. This thesis studied the oxygen reduction activity in neutral pH for pyrolyzed-vitamin B12/C and the possibility of using pyrolyzed-vitamin B12/C as microbial fuel cell cathode catalyst.
The microbial fuel cell cathode catalysts were synthesized by the following procedure. First, vitamin B12 was mixed with carbon black (XC-72), and then sintered this mixture under nitrogen environment. The best heat treatment condition of pyrolyzed-vitamin B12/C was at 700oC. We compared the oxygen reduction activity in neutral pH of pyrolyzed-vitamin B12 with the commercial Pt/C and the most popular non-noble catalyst (pyrolyzed-CoTMPP/C) by rotating ring disk electrode. In oxygen saturated neutral buffer solution, pyrolyzed-vitamin B12/C showed the best oxygen reduction activity among the three catalysts. In order to know clearly the oxygen reduction reaction mechanism, we compared the oxygen reduction activity of these three catalysts in acidic solution. For investigating the heat treatment effect, XRD, Raman, XANES, EXAFS and TEM were measured to understand the structure and electron configuration of pyrolyzed-vitamin B12
Finally, we used pyrolyzed-vitamin B12/C as microbial fuel cell cathode catalyst. The polarization curve obtained from measuring the output current and output voltage under different external resistance shows that three power density of pyrolyzed-vitamin B12 based microbial fuel cell was 50% better than the commercial Pt/C based microbial fuel cell.
1. J. Larminie, A. Dicks, Fuel cell systems explained, 2nd edition. John Wiely & Sons Inc. NY, USA, (2003).
2. 衣寶廉, 燃料電池-原理與應用. 五南出版社 1, 15-153 (2005).
3. B. E. Logan, J. M. Regan, Microbial Fuel Cells Challenges and Applications. Environmental Science & Technology 40, 5172-5180 (2006).
4. H. R. Yazdi, S.M.Carver, A. D. Christy, O. H. Tuovinen, Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources 180, 683-694 (2008).
5. M. C. Potter, Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society of London 84, 260-276 (1911).
6. C. A. Vega, I. Fernandez, Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochemistry and Bioenergetics 17, 217-222 (1987).
7. B. H. Kim, T. Ikeda, H. S. Park, H. J. Kim, M. S. Hyun, K. K., K. Takagi, H. Tatsumi, Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques 13, 475-478 (1999).
8. L. M. Tender, S. A. Gray, E. Groveman, D. A. Lowy, P. Kauffman, J. Melhado, R. C. Tyce, D. Flynn, R. Petrecca, J. Dobarro, The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Sources 179, 571-575 (2008).
9. Y. G. Yang, G. P. Sun, M. Y. Xu, Microbial fuel cells come of age. Journal of Chemical Technology & Biotechnology 86, 625-632 (2010).
10. D. R. Bond, D. R. Lovely, Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Appl. Environ. Microbiol. 69, 1548-1555 (2003).
11. J. Ditzig, H. Liu, B. E. Logan, Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). International Journal of Hydrogen Energy 32, 2296-2304 (2007).
12. H. Liu, S.Grot, B. E. Logan, Electrochemically Assisted Microbial Production of Hydrogen from Acetate. Environmental Science & Technology 39, 4317-4320 (2005).
13. B. E. Logan, B. Hamelers, R. Rzendal, U. schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology 40, 5181-5192 (2006).
14. L. Hong, B. E. Logan, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science & Technology 38, 4040-4046 (2004).
15. J. K. Jang, T.H.Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, B. H. Kim, Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry 39, 1007-1012 (2004).
16. P. Liang, X.Huang, M. Z. Fan, X. X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells. Applied Microbiology and Biotechnology 77, 551-558 (2007).
17. D. R. Lovley, Bug juice: harvesting electricity with microorganisms. Nat Rev Micro 4, 497-508 (2006).
18. B. E. Logan,. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro 7, 375-381 (2009).
19. D. K. Newman, R.Kolter, A role for excreted quinones in extracellular electron transfer. NATURE 405, 94-97 (2000).
20. G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, Extracellular electron transfer via microbial nanowires. NATURE 435, 1098-1101 (2005).
21. M. Y. El-Naggar, Y.A.Gorby, W. Xia, K. H. Nealson, The molecular density of states in bacterial nanowires. Biophysical journal 95, L10-2 (2008).
22. H. Yi, K. P. Nevin, B. C. Kim, A. E. Franks, A. Klimes, L. M. Tender, D. R. Lovley, Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics 24, 3498-3503 (2009).
23. A. E. Franks, K. P. Nevin, Microbial Fuel Cells, A Current Review. Energies 3, 899-919.
24. D. H. Park, J. G. Zeikus, Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering 81, 348-355 (2003).
25. F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, I. Herrmann, Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications 7, 1405-1410 (2005).
26. F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environmental Science & Technology 40, 5193-5199 (2006).
27. A. Bergel, D. Feron, A.Mollica, Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communications 7, 900-904 (2005).
28. G. W. Chen, S.J.Choi, T. H. Lee, G. Y. Lee, J. H. Cha, C.W. Kim, Application of biocathode in microbial fuel cells: cell performance and microbial community. Applied Microbiology and Biotechnology 79, 379-388 (2008).
29. S. J. You, N.Q.Ren, Q. L. Zhao, J. Y. Wang, F. L. Yang, Power Generation and Electrochemical Analysis of Biocathode Microbial Fuel Cell Using Graphite Fibre Brush as Cathode Material. Fuel Cells 9, 588-596 (2009).
30. M. Zhou, M.Chi, J. Luo, H. He, T. Jin, An overview of electrode materials in microbial fuel cells. Journal of Power Sources 196, 4427-4435.
31. Y. H. Ahn, B. E. Logan, Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology 101, 469-475 (2010).
32. Z. He, S. D. Minteer, L. T. Angenent, Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environmental Science & Technology 39, 5262-5267 (2005).
33. Y. Zuo, S. Cheng, B. E. Logan, Ion Exchange Membrane Cathodes for Scalable Microbial Fuel Cells. Environmental Science & Technology 42, 6967-6972 (2008).
34. T. Sharma, A. L. M. Reddy, T.S. Chandra, S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy 33, 6749-6754 (2008).
35. Y. J. Zou, C. Xiang, L. Yang, L. X. Sun, F. Xu, Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. International Journal of Hydrogen Energy 33, 4856-4862 (2008).
36. Y. Qiao, C. M. Li, S. J. Bao, Q. L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources 170, 79-84 (2007).
37. X. Xie, L.Hu, M. Pasta, G. F. Wells, D. Kong, C. S. Criddle, Y. Cui, Three-Dimensional Carbon Nanotube-textile Anode for High-Performance Microbial Fuel Cells. Nano Letters 11, 291-296 (2011).
38. M. R. Tarasevich, A. Sadkowski, E. Yeager, Comprehensive Treatise of Electrochemistry. Plenum Press 7 (1983).
39. C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. J. Wang, J. J. Zhang, A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochimica Acta 53, 4937-4951 (2008).
40. B. K. Lim, M.Jiang, P. H. C. Camargo, E. C. Cho, J. T., X. Lu, Y. Zhu, Y. N. Xia, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 324, 1302-1305 (2009).
41. J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen1, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1, 552-556 (2009).
42. R. Jasinski, A new fuel cell cathode catalyst. NATURE 201, 1212-1213 (1964).
43. S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. Journal of Applied Electrochemistry 19, 19-27 (1989).
44. H. T. Chung, C. M. Johnston, P. Zelenay, Synthesis and Evaluation of Heat-treated, Cyanamide-derived Non-precious Catalysts for Oxygen Reduction. ECS Transactions 25, 485-492 (2009).
45. M. Lefèvre, E. Proietti, F. Jaouen, J. P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 324, 71-74 (2009).
46. G. Wu, K. L. More, C. M. Johnston, P. Zelenay, High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 332, 443-447 (2011).
47. D. Ohms, S. Herzog, R. Franke, V. Neumann, K. Wiesener, Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile. Journal of Power Sources 38, 327-334 (1992).
48. J. Fournier, G. Lalande, R. Côté, D. Guay, J. P. Dodelet, Activation of Various Fe-Based Precursors on Carbon Black and Graphite Supports to Obtain Catalysts for the Reduction of Oxygen in Fuel Cells. Journal of the Electrochemical Society 144, 218-226 (1997).
49. J. A. R. van Veena, H. A. Colijna, J.F. van Baar, On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochimica Acta 33, 801-804 (1988).
50. A. L. B. Wijnoltz, W. Visscher, J. A. R. van Veen, E. Boellaard, A. M. V. D. Kraan, S. C. Tang, On Active-Site Heterogeneity in Pyrolyzed Carbon-Supported Iron Porphyrin Catalysts for the Electrochemical Reduction of Oxygen: An In Situ Mössbauer Study. The Journal of Physical Chemistry B 106, 12993-13001 (2002).
51. S. Lj. Gojkovic, S. Gupta, R. F. Savinell, Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction:: Part III. Detection of hydrogen-peroxide during oxygen reduction. Electrochimica Acta 45, 889-897 (1999).
52. G. Lalande, R. Côté, G. Tamizhmani, D. Guay, J. P. Dodelet, L. D. Bailey, L. T. Weng, P. Bertrand, Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta 40, 2635-2646 (1995).
53. H. S. Liu, C. J. Song, Y. H. Tang, J. L. Zhang, J. J. Zhang, High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochimica Acta 52, 4532-4538 (2007).
54. C. H. Wang, S. T. Chang, H. C. Hsu, H. Y. Du, J. C. S. Wu, L. C. Chen, K. H. Chen, Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond and Related Materials 20, 322-329.
55. N. A. Savastenkoa, V. Brüser, M. Brüser, K. Anklam, S. Kutschera, H. Steffena , A. Schmuhl, Enhanced electrocatalytic activity of CoTMPP-based catalysts for PEMFCs by plasma treatment. Journal of Power Sources 165, 24-33 (2007).
56. Z. F. Ma, X. Y. Xie, X. X. Ma, D. Y. Zhang, Q. Ren, N. H. Mohr, V. M. Schmidt, Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell. Electrochemistry Communications 8, 389-394 (2006).
57. S. Cheng, H. Liu, B. E. Logan, Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells. Environmental Science & Technology 40, 364-369 (2005).
58. E. H. Yu, S. Cheng, S. Keith, Bruce. E. Logan, Microbial fuel cell performance with non-Pt cathode catalysts. Journal of Power Sources 171, 275-281 (2007).
59. E. H. Yu, S. Cheng, B. E. Logan, K. Scott, Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. Journal of Applied Electrochemistry 39, 705-711 (2009).
60. L. Deng, M. Zhou, C. Liu, L. Liu, C. Y. Liu, S. J. Dong, Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells. Talanta 81, 444-448 (2010).
61. R. S. V. Bordwehr, A History of X-ray absorption fine structure. Annales de Physique 14, 377-465 (1989).
62. N. M. Markovic′, H. A. Gasteiger, P. N. Ross, Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring DiskPt(hkl) Studies. The Journal of Physical Chemistry 100, 6715-6721 (1996).
63. Z. L. Zhang, B. Wang, Y. F. Yin, Y. J. Mo, Surface-enhanced Raman spectroscopy of Vitamin B12 on silver particles in colloid and in atmosphere. Journal of Molecular Structure 927, 88-90 (2009).
64. J. M. Ziegelbauer, T. S. Olson, S. Pylypenko, F. Alamgir, C. Jaye, P. Atanassov, S. Mukerjee, Direct Spectroscopic Observation of the Structural Origin of Peroxide Generation from Co-Based Pyrolyzed Porphyrins for ORR Applications. The Journal of Physical Chemistry C 112, 8839-8849 (2008).
65. Y. Z. Fan, E. Sharbrough, H. Liu, Quantification of the Internal Resistance Distribution of Microbial Fuel Cells. Environmental Science & Technology 42, 8101-8107 (2008).
66. L. Birry, P. Mehta, F. Jaouen, J. P. Dodelet, S. R. Guiot, B. Tartakovsky, Application of iron-based cathode catalysts in a microbial fuel cell. Electrochimica Acta 56, 1505-1511 (2011).
67. B. R. Ringeisen, R. Ray, B. Little, A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of Power Sources 165, 591-597 (2007).
68. K. Rabaey, N. Boon, M. Hofte, W. Verstraete, Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells. Environmental Science & Technology 39, 3401-3408 (2005).