簡易檢索 / 詳目顯示

研究生: 李柏蒼
Po Chang Lee
論文名稱: 幾何參數對單管矽質矩形微流道沸騰熱傳之影響
Geometry Parameter Effects on Convective Boiling in a Single Silicon-Based Rectangular Micro-channel
指導教授: 潘欽
Chin Pan
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 155
中文關鍵詞: 爆發的成核沸騰微流道沸騰穩定性漸擴微流道沸騰熱傳深寬比效應
外文關鍵詞: Eruptive Nucleate Boiling, Microchannel, Boiling Stability, Diverging Microchannel, Boiling Heat transfer, Aspect Ratio Effect
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微流道內的雙相流與沸騰熱傳對於新能源工程、微電子、汽車、航太、氣體分離等等產業都可能扮演重要角色,也是近年非常受到重視的熱流研究議題。利用微熱管或微冷卻器的高移熱能力則是微電子元件效能進一步提昇的重要關鍵。尤其矽質微流道可以直接蝕刻於矽基,利用微流道內的沸騰熱傳之高熱傳遞係數及微流道組成的高移熱面積,將可移除大量的熱,而提昇微電子元件的效能。然而過去文獻中的研究與本實驗室的探討顯示,微流道內的沸騰與伴隨的雙相流,由於微流道微小的截面積(或水力直徑)產生很大的壓降。如此高的壓降意味著困難的流體推動設計及高幫浦功率。尤其,微流道內的沸騰也可能導致雙相流的不穩定性,特別是在高熱通率及低流量的運轉條件下。熱流不穩定性常導致早發的臨界熱通率而造成流道的乾化與相當高的壁溫。.
    本研究的目的在探討漸擴微流道中的沸騰熱傳與雙相流現象,希望發展出具有高移熱能力、低流阻而穩定的微流道設計,進而設計出多平行微流道熱沈的系統,供微冷卻器之用。此外,本研究也將進行等截面積微流道的深寬比對沸騰熱傳與雙相流研究,以為比較之用。新的微流道設計預期可以顯著地的降低微流通沸騰時的流阻並能有效地增加沸騰時雙相流的穩定性。
    本研究是應用微機電(MEMS) 技術中的面型微加工及體型微加工來製作矽質微流道,以達製作預定水力直徑的漸擴與深/淺的均勻微流道之設計目標,來進行流動沸騰熱傳的研究,我們將以高速攝影機觀察流道內的氣泡成核現象、氣泡的成長與脫離,及彈狀氣泡的成長與雙相流譜在流道中的演進,並比較漸擴與深/淺的均勻微流道中的異同。此外,我們也將量測沸騰熱傳遞係數、雙相流壓降、與雙相流的穩定性的結果並比較三種流道。
    在過去的相關文獻中顯示,在高壁過熱度的微流道中沒有觀測到沸騰起始點但卻有快速且激烈的氣液介面震盪或突然產生氣液介面。文獻中的研究稱這樣微流道內特殊的沸騰(eruptive boiling)現象。本研究利用超高速攝影機,確認這樣微通道內有突沸的現象,為一種超快速的氣泡成核現象。如果沸騰起始點靠近出口(系統壓力較低,氣泡生成頻率較高)時,成核後高速成長的氣泡將與下游的彈狀氣泡合併,而形成有如快速且激烈的氣液介面震盪現象。另一方面,當沸騰起始點靠近入口時,就可觀察到突然產生的氣液介面的現象,亦即單相液體突然變成雙相環狀流。這種突沸現象亦可用傳統預測空穴大小的理論模式來預測,並於實驗量測的結果有良好的比對。
    在單一等截面積與小角度(α=0.183°)漸擴矩形矽質微通道內的沸騰現象及雙相流系統的研究結果顯示,在相近的水力直徑與單管微流道於相近的熱通率之流動沸騰條件下,漸擴微通道比等截面積微通道條件下有較高的雙相流穩定度及較高移熱能力且相近的雙相流阻。利用漸擴截面積微型流道特色結構,可以抑制沸騰氣泡逆向迴流進而有效消除或抑制微流道特有的雙相流不穩定性。這使得沸騰氣泡可平穩的流過微流道,因此其散熱能力顯著高於等截面積微通道。此外,以對流沸騰熱傳為主要模式的經驗式亦被提出,並於實驗量測的結果有良好的比對。
    深寬比的效應對單一等截面積矩形矽質微通道內的沸騰現象及雙相流系統的研究結果顯示,在相近的水力直徑與微流道於相近的熱通率之流動沸騰條件下,高深寬微通道比低深寬微通道條件下有較高的雙相流穩定度及較高移熱能力且較低的雙相流阻。利用深反應離子蝕刻技術製作的高深寬比微型流道,因其側壁較粗,有利成核沸騰,可以抑制沸騰起始的不穩定(壁過熱度較低)進而壓抑微流道內的雙相流不穩定性。因此其散熱能力顯著高於較淺的微通道。
    電雙層的效應對單一等截面積矩形矽質微通道內的沸騰現象及雙相流系統的研究結果顯示,在相近的水力直徑與微流道於相近的熱通率之流動沸騰條件下,低深寬微通道比高深寬微通道條件下有較高移熱能力且較高的單流阻。利用Pyrex玻璃封合的低深寬比微型流道,因其玻璃表面積較高深寬微通道多,有較強的電雙層的效應,使的系統內的磨擦因子較高,反應出較高的系統壓降。由Chilton-Colburn關聯式可知系統內的磨擦因子較高代表有較高移熱能力。因此其單相液體散熱能力顯著高於較深的微通道。
    比對研究成果發現,在單相流液體狀態下,漸擴微流道與低深寬比微型流道,兩者都有較高移熱能力但亦有較高的單相流壓降。然而,在雙相狀態下,高深寬比微流道有較高移熱能力(對低深寬比微型流道)且較低的雙相流阻(對漸擴微流道)。如此可知,高深寬比漸擴流道設計不但可用於單相狀態的微流道熱移裝置亦將可以提供較高且穩定的沸騰熱傳與雙相流狀態。


    This study conducts the experimental investigation, visualization and modeling of convective boiling of water in the three types of single microchannel with approximately the same hydraulic diameter of 35μm. The aspect ratios, i.e., depth-to-width ratio, of two uniform-cross-section microchannels are 0.20 and 4.43 each with a hydraulic diameter of 33.7 μm and 36.4 μm, respectively. Another one is a diverging microchannel with a diverging angle of 0.183° and a mean hydraulic diameter of 34.8μm. All of the microchannels are made of SOI wafer and prepared using bulk micro-machining and anodic bonding. The surface roughness for both the bottom and the side walls was measured using an atomic force microscope enabling the explanation of convective boiling mechanism in the microchannel.
    The evolution of the eruptive boiling of water in the smooth microchannel was clearly examined using an ultra high speed video camera (up to 50,000 frames per second). It is confirmed that eruptive boiling is a form of rapid bubble nucleation after which the bubble merges with a slug bubble downstream in a short distance or evolve to a slug bubble. The bubble frequency in all of the cases studied is provided. Eruptive boiling may be predicted classically with micro-sized cavities that are consistent with the measured surface roughness.
    Furthermore, experiments are conducted to study the effect of channel cross-section design on boiling heat transfer in the microchannel. It is found that the slug bubbles tend to grow exponentially in the present microchannels. The results reveal that diverging microchannel presents better performance in boiling heat transfer than that of uniform-cross-section one, primarily due to more stable two-phase flow in the diverging microchannel. Empirical correlations based on convective boiling are developed, respectively, for both types of microchannel. For the same mass flow rate, the diverging microchannel presents higher single phase flow pressure drop, while the two-phase flow in both types of channels shows approximately the same pressure drop for boiling at the same heat flux.
    The aspect ratio of channels with approximately the same hydraulic diameter also affects heat transfer and pressure drop data significantly, single- or two-phase. For the same flow rate, the shallow microchannel presents better heat transfer performance in single phase region, while the deep one become better when boiling occurs. Analogically, the shallow microchannel depicts s higher single phase pressure drop and this may be due to EDL effect. While the two-phase flow in the deep one shows the smaller pressure drop for boiling at the same heat flux. Observation of two-phase flow pattern indicates that the flow reversal in the shallow microchannel is more violent than that in the deep one. This is consistent with the higher boiling heat transfer rate for the deep microchannel with a smaller two-phase pressure drop.
    The result of present study suggest that diverging cross-section design with a large aspect ratio is the better geometry for microchannels in a heat sink to have stable and high boiling heat transfer capability and yet low pressure drop.

    Acknowledgments I 摘要 II Abstract V Table of Contents VII List of Tables XI List of Figures XII Nomenclatures XVIII 1.1 Background and Motivation of This Study 1 1.2 Objectives 2 1.3 Thesis Scope 4 Chapter 2 Literature Review 5 2.1 Flow Boiling in Mini- or Micro-channels 5 2.2 Two-Phase Flow Instability in Microchannels 10 Chapter 3 Experimental Instrumentation and Procedures 14 3.1 Experimental Loop 14 3.1.1 Test Section 14 3.1.2 Heating Module 15 3.1.3 Heating Power Supply Device 15 3.1.4 HPLC Pump 16 3.1.5 Precision Electronic Balance 16 3.2 Measurement Instrumentation 16 3.2.1 Temperature Measurement 16 3.2.2 Pressure Measurement 17 3.2.3 Data Acquisition System 17 3.3 Image Acquisition and Analysis System 18 3.3.1 High Speed Video Camera 18 3.3.2 Zoom 160 Optical System 18 3.3.3 Image Process and Proven Solution 19 3.4 Experimental Procedure 19 3.5 Energy Balance and Heat Loss 20 3.6 Evaluation of the Heat Transfer Coefficient 22 3.7 Uncertainty Analysis 23 3.8 Fabrication Process of the Microchannel 26 3.8.1 Fundamental Principle 26 3.8.1.1 SOI Wafer 27 3.8.1.2 Photolithography 27 3.8.1.3 DRIE 28 3.8.1.4 Laser Cutting 28 3.8.1.5 Anodic Bonding 28 3.8.2 Design Principles 28 3.8.3 The Fabrication Processes 29 3.8.4 SEM Picture 29 Chapter 4 Eruptive Boiling and Some Peculiar Interfacial Phenomena 60 4.1 Background 60 4.2 Surface Roughness 61 4.3 Time Evolution of Eruptive Boiling 61 4.4 Comparisons with Classical Heterogeneous Nucleation Theories 63 4.5 Growth of Slug Bubble 66 4.6 Bubble Interactions 67 4.7 Partial Dryout of Liquid Film in Slug Slow 68 4.7 Summary 68 Chapter 5 Stabilizing Effect of Diverging Geometry on Flow Boiling 85 5.1 Background 85 5.2 Effects of Channel Geometry 85 5.3 Stabilizing Effect of Diverging Design 87 5.4 Effect of Diverging Design on Slug and Annular Flow 91 5.5 Summary 92 Chapter 6 Boiling Heat Transfer and Two-phase Flow Pressure Drop 108 6.1 Background 108 6.2 Two-Phase Flow Pressure Drop 109 6.3 Boiling Heat Transfer 112 6.4 Development of Empirical Correlations 115 6.5 Summary 117 Chapter 7 Effects of Aspect Ratio on Boiling Heat Transfer and Two-Phase Flow 127 7.1 Surface Roughness and Area of Top Glass Wall 127 7.1 Effect on Two-phase Flow Pattern and Flow Instability 127 7.2 Heat Transfer Analysis 130 7.3 Pressure Drop Analysis 132 7.4 Summary 133 Chapter 8 Summary and Conclusions 145 References 147 Publication List of Dr. Po Chang Lee 153 Vita 155

    Brutin D. and Tadrist L. 2003 “Measure and prediction of pressure drop in two-phase microchannel heat sink” Int. J. Heat Mass Transf. 46 2737-2753
    Barajas A. M. and Panton R. L. 1993 “The effects of contact angle on two-phase flow in capillary tube” Int. J. Multiphase Flow 19(2) 337-346
    Chang K. H. and Pan C. 2007 “Two-phase flow instability for boiling in a microchannel heat sink” Int. J. Heat Mass Transf. 50 2078-2088
    Chen T. and Garimella S.V. 2006 “Effect of dissolved air on subcooled flow boiling of a dielectric coolant in a microchannel heat sink” J. Electro. Packag. 128 398-404.
    Chen T., Suresh V. and Garimella S.V. 2006 “Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink” Int. J. Multiphase Flow 32 957-971
    Chen W. L., Tseng F. G. and Pan C. 2002 “Boiling heat transfer and pressure drop in silicon-based micro-channels” Proc. Pacific rim workshop on Transducers and Micro/Nano Technologies (Xiamen, China) pp.307-310
    Collier J.G. and Thome J.R. 1994 “Convective boiling and condensation”, 3rd Ed., Clarendon Press, Oxford, UK, pp. 191.
    Cuttie I.G. 1993 Fundamental mechanics of fluid, McGraw-Hill, Inc., New York
    Ellsworth M.J. 2004 “Chip power density and module cooling technology projections for the current decade” Proc. Int. Society Conference on Thermal Phenomena pp. 707-708
    Ghiaaiaan S. M. and Chedester R. C. 2002 “Boiling incipience in microchannel” Int. J. Heat Mass Transf. 45 4599-4606
    Hardt S., Schider B., Tiemann D., Kolb G., Hessel V. and Stephan P. 2007 “Analysis of flow pattern emerging during evaporation in parallel microchannel” Int. J. Heat Mass Transf. 50 226-239
    Hetsroni G., Mosyak A. and Segal Z. 2001 “Nonuniform temperature distribution in electronic devices cooled by flow in parallel micro-channel” IEEE Trans. Compon. Packaging Technol. 24 16-23
    Hetsroni G., Mosyak A., Pogrebnyak E. and Segal Z. 2005 “Explosive boiling of water in parallel micro-channels” Int. J. Multiphase Flow 31 371-392
    Hetsroni G., Mosyak A., Pogrebnyak E. and Segal Z. 2006 “Periodic boiling in parallel micro-channels at low vapor quality” Int. J. Multiphase Flow 32 1141–1159
    Hetsroni G., Mosyak A., Segal Z. and Ziskind G. 2002 “A uniform temperature heat sink for cooling of electronic devices” Int. J. Heat Mass Transf. 45 3275-3286
    Hino R. and Ueda T. 1985 “Studies on heat transfer and flow characteristics in subcooling flow boiling-part 1 boiling characteristics” Int. J. Multiphase Flow 11 269-282
    Hsu Y. Y. 1962 “On the size range of active nucleation cavities on a heating surface” ASME J. Heat Transf. 41 207-216
    Huh C., Kim J. and Kim M. H. 2007 “Flow pattern transition instability during flow boiling in a single microchannel” Int. J. Heat Mass Transf. 50 1049–1060
    Hwang J.J. Tseng F.G. and Pan C. 2005 “Ethanol-CO2 two-phase flow in diverging and converging microchannels” Int. J. Multiphase Flow 31 548-570.
    Incripera F. P. and DeWitt D. V. 1996 Fundamentals of heat and mass transfer, John Wiley and Sons, Ing., New York.
    Jacobi A.M. and Thome J. R. 2002 “Heat transfer model for evaporation of elongated bubble flow in microchannels” ASME J. Heat Transf. 124 1131-1136
    Jeong D. W., Koh K. U. and Lee S. Y. 2003 “Preliminary consideration to avoid eruptive flow boiling in microchannels” Proc. First Int. Microchannel and Minichannel (Rochester, USA) pp. 609-614.
    Jiang L., Koo J. M., Zeng S., Mikkelsen J. C., Zang L., Zhou P., Santiago J. G., Kenny T. W. and Goodson K. E. 2001 “Two-phase microchannel heat sinks for an electrokinetic VLSI chip cooling system” Proc. Seventeenth IEEE SEMI-THERM Symposium pp. 153-157.
    Kandlikar S. G. 2002 “Fundamental issues related to flow boiling in minichannels and microchannels” Exp. Therm. Fluid Sci. 26 389-407
    Kandlikar S.G. 2004 “Heat transfer mechanisms during flow boiling in micro channel,” ASME J. Heart Transf. 126 8-16
    Kandlikar S. G. 2006 “Nucleation characteristics and stability considerations during flow boiling in microchannel” Exp. Therm. Fluid Sci. 30 441-447
    Kawahara A, Chung P.M-Y and Kawaji M. 2002 “Investigation of two phase flow pattern, void fraction and pressure drop in a Microchannel” Int. J. of Multiphase Flow 28 1411-1435
    Kennedy J. E., Roach Jr. G. M., Dowling M.F., Abdel-khalik S. I., Ghiaasiaan S.M., Jeter, S. M. and Quereshi Z.H. 2000 “The onset of flow instability in uniformly heated horizontal microchannels” ASME J. Heat Transf. 200 118-125
    Kosar A., Kuo C. J. and Peles Y. 2005 “Boiling heat transfer in rectangular microchannels with reentrant cavities” Int. J. Heat Mass Transf. 48 4867-4886
    Kosar A., Kuo C. J. and Peles Y. 2006 “Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors” ASME J. Heat Transf. 128 251-260
    Kuo C. J., Kosar A., Peles Y., Virost S., Mishra C. and Jensen M. K. 2006 “Bubble dynamic during boiling in enchanced surface microchannels,” J. Microelectromech. Sys. 16 1514-1527
    Lee J. and Mudawar I. 2005a “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II – heat transfer characteristics” Int. J. Heat Mass Transf. 48 941-955
    Lee J. and Mudawar I. 2005b “Two-phase flow in high heat flux micro-channel heat sink for refrigeration cooling applications: Part I – pressure drop characteristics” Int. J. Heat Mass Transf. 48 928-940
    Lee P. C., Li H. Y. and Pan C. 2003 “Nucleate boiling heat transfer in silicon-based boiling channel” Proc. ASME Summer Heat Transfer Conference (Las Vegas, USA)
    Lee P. C., Tseng F. G. and Pan C. 2004 “Bubble dynamics in microchannel, Part (I) single microchannel” Int. J. Heat Mass Transf. 47 5575-5589
    Li H. Y., Lee P. C. and Pan C. 2005 “Two-phase flow instability of boiling in two parallel microchannels” J. CSME 26 1 27-37
    Li H. Y., Lee P. C., Tseng F. G. and Pan C. 2003 “Two-phase flow instability of boiling in a double microchannel system at high heating powers” Proc. 1st Int. Conf. in Microchannels and Minichannels (Rochester, USA) pp. 615-622
    Li H. Y., Tseng F. G., and Pan C. 2004 “Bubble dynamics in microchannel, Part (II) two parallel microchannel” Int. J. Heat Mass Transf. 47 5591-5601
    Lu C. T. and Pan C. 2006 “Bubble dynamics for convective boiling in silicon-based, converging and diverging microchannels” Proc. 13th Int. Heat Transfer Conf. (Sydney, Australia)
    Madou M. 1997 Fundamentals of microfabrication, CRC press LLC, Boca Raton, Florida.
    Moffat R. J. 1998 “Describing the uncertainties in experimental result” Exp. Therm. Fluid Sci. 1 3-17
    Mudawar I. 2001 “Assessment of high-heat-flux thermal management schemes” IEEE Trans. Compon. Packaging Technol. 24 122-141
    Muwanga R., Hassan I. and MacDonald R. 2007 “Characteristics of flow boiling oscillations in silicon microchannel heat sinks ” ASME J. Heat Transfer 129 1341–1351
    Qu W. and Mudawar I. 2002a “Experimental and numerical study of pressure drop and heat transfer in a single-phase microchannel heat sink” Int. J. Heat Mass Transf. 45 2549-2565
    Qu W. and Mudawar I. 2002b “Prediction and measurement of incipient boiling heat flux in microchannel heat sinks” Int. J. Heat Mass Transf. 45 3933-3945
    Qu W. and Mudawar I. 2003a “Measurement and prediction of press drop in two-phase microchannel heat sinks” Int. J. Heat Mass Transf. 46 2737-2753
    Qu W. and Mudawar I. 2003b “Flow boiling heat transfer in two-phase micro-channel heat sinks-II: Annular two-phase flow model” Int. J. Heat Mass Transf. 46 2773-2784
    Ren C. L. and Li D. 2005 “Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannel” Anal. Chim. Acta 531 15-23
    Revellin R. and Thome J. R. 2007 “A new type of diabatic flow pattern map for boiling heat transfer in microchannels” J. Micromech. Microeng. 17 788-796
    Revellin R., Dupont V., Ursenbacger T., Thome J. R. and Zun I. 2006 “Characterization of diabatic two-phase flows in microchannels: flow parameter results for R-134a in 0.5 mm channel” Int. J. Multiphase Flow 32 755-774
    Steinke M. E. and Kandlikar S. G. 2004a “An experimental investigation of flow boiling characteristics of water in parallel microcannel” ASME J. Heat Transf. 126 518-526
    Steinke M. E. and Kandlikar S. G. 2004b “Control and effect of dissolved air in water during flow boiling in microchannels” Int. J. Heat Mass Transf. 47 1925-1935
    Thome J. R. 2003 “Boiling in microchannels: a review of experiment and theory” Int. J. Heat fluid flow 25 128-129
    Thome J. R., Dupont V. and Jacobi A. M. 2004a “Heat transfer model for evaporation in microchannels. Part I: presentation of the model” Int. J. Heat Mass Transf. 47 3375-3385
    Thome J. R., Dupont V. and Jacobi A. M. 2004b “Heat transfer model for evaporation in microchannels. Part II: comparison with database” Int. J. Heat Mass Transf. 47 3387-3401
    Tuckerman D. B., Pease R. F. W. 1981 “High-performance heat sinking for VLSI” IEEE Electron Device Letters 2 (5) 126–129.
    Wallis G. and Pomerantz D. I. 1969 “Field assisted glass-metal sealing” J. Appl. Phys. 40 3348-3949.
    Wang G., Cheng P. and Wu H. 2007a “Unstable and stable flow boiling in parallel microchannels and in a single microchannel” Int. J. Heat Mass Transf. 50 4297–4310
    Wang G., Cheng P. and Bergles A. E. 2008 “Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels” Int. J. Heat Mass Transf. 51 2267-2281
    Wu H. Y. and Cheng P. 2004 “Boiling instability in parallel silicon microchannels at different heat flux” Int. J. Heat Mass Transf. 47 3631-3641
    Wu H. Y., Cheng P. and Wang H. 2006 “Pressure drop and flow boiling instabilities in silicon microchannel heat sinks” J. Micromech. Microeng. 16 2138-2146
    Yan C. and Li D. 1997 “Electrokinetic effects on pressure-driven liquid flows in rectangular microchannel” J. Colloid Interface Sci. 194 95-107
    Yen T. H., Shoji M., Takemura F., Suzuki Y. and Kasagi N. 2006 “Visualization of convective boiling heat transfer in single microchannels with different shaped cross-section” Int. J. Heat Mass Transf. 49 3884-3894
    Zhang L., Koo J. M., Jiang L., Asheghi M., Goodson K. E., Santiago J. G. and Kenny T. W. 2002 “Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions” J. of Microelectromech. Sys. 11 12-1119
    Zhang L., Wang E. N., Goodson K. E. and Kenny T. W. 2005 “Phase change phenomena in silicon microchannels” Int. J. Heat Mass Transf. 48 1572–1582

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE