研究生: |
黃玟玲 Huang, Wen-Ling |
---|---|
論文名稱: |
開發以雷射構圖製備生物可降解高分子 聚合物微流道系統 Development of Laser Patterning for the Fabrication of Biodegradable Polymeric Microfluidic Systems |
指導教授: |
王竹方
Wang, Chu-Fang 王潔 Wang, Jane |
口試委員: |
蔣本基
談駿嵩 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 微流體 、雷射構圖 、生物可降解高分子聚合物 、雷射剝蝕 |
外文關鍵詞: | microfluidic, laser patterning, biodegradable polymer, laser ablation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微流體系統已經廣泛應用於各個領域,例如診斷、組織工程、醫療或製藥。使用三種具有透明度生物相容性或生物可降解高分子聚合物PDMA、PGS、APS材料以雷射構圖方式作為微流體系統,雷射構圖是相當簡單的微流體系統製造方式,這是個容易控制、環保且安全過程相比於傳統製造。在這研究中使用ArF雷射系統,有五種主要參數可設置:能量密度(每單位面積所受能量)、光束發射頻率、光束速度、光束尺寸、重複剝蝕次數,我們發現能量密度6 J/cm^2、光束發射頻率20 Hz、光束速度200 μm/s、光束尺寸150μm、重複剝蝕25 次為最佳化設置。另外討論使用雷射剝蝕在聚合物上製造微流體系統細節,呈現其雷射構圖的幾個重要特性,例如:重疊、轉彎變化、離焦狀態,最後使用其雷射製圖最佳化條件和特性在高分子聚合物PDMA、PGS、APS 上製作微流體系統,並觀察流體流動特性和其應用。
Microfluidic system has been widely applied in various fields such as diagnostics, tissue engineering, medical or pharmaceutical industries. Three optically transparent biocompatible/biodegradable polymers, poly(dimethylsiloxane) (PDMS), poly (glycerol sebacate) (PGS), and poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s (APS), were used in this study to fabricate microfluidic system using laser ablation technique. Laser ablation is a rather simple method to fabricate microfluidic system. It is an easily controlled, green and safe process compared to conventional microfluidic system fabrication methods. Laser ablation has been carried out with ArF laser system during the investigation. There are five main parameters controlling the settings of the laser-ablation system: fluence (energy per unit area), beam firing frequency, beam velocity, beam size of laser pulse, and repeated ablation. Fluence of 6 J/cm2, frequency at 20 Hz, beam velocity of 200 μm/s, beam size of 150μm, and repeated ablation of 25 times are chosen as the setting for effectively and efficiently the fabrication of microfluidic systems. In addition, details of manufacturing of microfluidic channels using laser patterning are also investigated by directly writing on the polymer film. Several important features of fabricated laser patterns are presented, such as overlap, corner variation, and defocus of laser. Finally, the application and fluid flow characteristics of microfluidic systems on PDMS, APS and PGS are discussed.
1. Sia, S.K.W., G.M. , Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 2003. 24: p. 3563-3576.
2. DeBusschere, B.D.B., D. A.; Kovacs, G. T. A. , “Design of an integrated silicon-PDMS cell cartridge,” in Solid State Sens. ActuatorsConf. Hilton Head. SC 1998: p. 358-362.
3. Hosogawa, K.F., T.; Endo, I., Hydrophobic microcapillary vent for pneumatic manipulation of liquid in-TAS. in Process. uTAS'98. Banff. Canada., 1998: p. 307-310.
4. Masuda, S.W., M.; Nanba, T., Novel method of cell fusion in field constriction area in fluid integrated circuit. . IEEE Ind. Applicat.Mag., 1989. 25: p. 732-737.
5. Xia, Y.W., G., Soft lithography. Angew Chem. Int. Ed., 1998. 37: p. 550-575.
6. Cheng, C.W.S., W. C.; Lin, C. Y.; Lee, Y. J.; Chen, J. S., Fabrication of micro/ nano crystalline ITO structures by femtosecond laser pulses. Appl Phys A. , 2010. 101: p. 243-488.
7. Chimmalgi, A.C., T. Y.; Grigoropoulos, C. P.; Komvopoulos, K., Femtosecond laser apertureless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett., 2003. 82: p. 1146-1148.
8. Kruger, J.K., W., The femtosecond pulse laser: a new tool for micromachining. Laser Phys., 1999: p. 930-940.
9. Malek, C.K.R., L.; Salut, R., Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips. Eur Phys J Appl Phys. , 2009. 46: p. 12503.
10. Kamata, M.O., M.; Gattass, R. R.; Cerami, L. R.; Mazur, E., Optical vibration sensor fabricated by femtosecond laser micromachining. 2005. 87: p. 051106.
11. An, R.U., J. D.; Yusko, E. C.; Ke, K.; Mayer, M.; Hunt, A. J., Ultrafast laser fabrication of submicrometer pores in borosilicate glass. Opt Lett., 2008. 33: p. 1153-1155.
12. Gaspard, S.F., M.; Huber, C. 2008, 10, 6174–6181., Femtosecond laser processing of biopolymers at high repetition rate. Phys Chem Chem Phys. , 2008. 10: p. 6174-6181.
13. Lee, C.Y.C., T. C.; Wang, S. C.; Chien, C. W.; Cheng, C. W., Using femtosecond laser to fabricate highly precise interior three dimensional microstructures in polymeric flow chip. Biomicrofluidics., 2010. 4: p. 46502.
14. Schaeffer, R., Fundamentals of laser micromachining. 2012.
15. Malek, C.G.K., Laser processing for bio-microfluidics applications (part I). Analytical and bioanalytical chemistry, 2006. 385(8): p. 1351-1361.
16. Malek, C.G.K., Laser processing for bio-microfluidics applications (part II). Analytical and bioanalytical chemistry, 2006. 385(8): p. 1362-1369.
17. H., M.T., Stimulated optical radiation in ruby. Nature, 1960. 187: p. 493-494.
18. Lippert, T., Laser application of polymers. Adv Polym Sci, 2004. 168: p. 51-246.
19. Anoop N. Samant, N.B.D., Laser machining of structural ceramics—A review. Journal of the European Ceramic Society, 2009. 29: p. 969-993.
20. Y. He, B.-L.H., D.-X. Lu, J. Zhao, B.-B. Xu, R. Zhang, X.-F. Lin, Q.-D. Chen, J. Wang, Y.-L. Zhang and H.-B. Sun, “Overpass” at the junction of a crossed microchannel: An enabler for 3D microfluidic chips. Lab Chip, 2012. 12: p. 3866-3869.
21. Kawamura Y., T.K., Namba S., Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl. Phys. Lett., 1982. 40: p. 374-375.
22. Srinivasan R., M.-B.V., Self-developing photoetching of poly(ethylene terephthalate) films by far ultraviolet excimer laser radiation. Appl. Phys. Lett. , 1982. 41: p. 576-578.
23. Steen, W.M., Laser materials processing. Springer, London, 1991.
24. Dahotre, N.B.a.H., S. P., Laser fabrication and machining of materials. Springer, New York, NY, 2008.
25. Dubey, A.K.a.Y., V. J., Experimental study of Nd:YAG laser beammachining—An overview. Mater. Process. Technol., 2008. 195(1-3): p. 15-26.
26. D.Minteer, S., Microfluidic technique reviews and protocols. . 2006.
27. Kumar, S.P.a.S., Fabrication of microchannels: A review. Proc IMechE Part B: J Engineering Manufacture, 2014: p. 1-16.
28. A. Waldbaur, H.R., K. Lange and B. E. Rapp, Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal. Methods, 2011. 3: p. 2681-2716.
29. Harrison, D.J.F., K.; Seiler, K.; Fan, Z.; Effenhauser, C. S.; Manz, A., Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science, 1993. 261: p. 895-897.
30. Thorsen, T.M., S. J.; Quake, S. R., Microfluidic large-scale integration. Science, 2002. 298(580-584).
31. Diercks, A.H.O., A.; Hansen, C. L.; Spotts, J. M.; Rodriguez, D. J.; Aderem, A., A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal. Biochem., 2009. 386: p. 30-35.
32. Park, S.Z., Y.; Lin, S.; Wang, T. H.; Yang, S., Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol. Adv., 2011. 29: p. 830-839.
33. Chiu, G.S.F.a.D.T., Disposable microfluidic devices: fabrication, function, and application. BioTechniques, 2005. 38: p. 429-446.
34. Lei, K.F., Microfluidic systems for diagnostic applications: A Review. Journal of Laboratory Automation, 2012. 17(5): p. 330-347.
35. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442: p. 368-373.
36. Daniel Mark, S.H., Gunter Roth, Felix von Stetten and Roland Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applicationsw. Chem. Soc. Rev., 2010. 39: p. 1153-1182.
37. Auroux, P.A.I., D.; Reyes, D. R.; Manz, A., Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem., 2002. 74: p. 2637-2652.
38. Reyes, D.R.I., D.; Auroux, P. A.; Manz, A., Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem., 2002. 74: p. 2623-2636.
39. Vilkner, T.J., D.; Manz, A. 2004, 76, 3373–3386., MicrotTotal analysis systems. Recent developments. Anal. Chem., 2004. 76: p. 3373-3386.
40. Bange, A.H., H. B.; Heineman, W. R., Microfluidic Immunosensor Systems. Biosens. Bioelectron., 2005. 20: p. 2488-2503.
41. Zhang, Y.O., P., Microfluidic DNA amplification: A Review. Anal. Chim. Acta, 2009. 638: p. 115-125.
42. Lei, K.F.L., W. J., A novel in-plane microfluidic mixer using vortex pumps for fluidic discretization. J. Assoc. Lab. Automat., 2008. 13: p. 227-236.
43. Jeong, G.S.C., S.; Kim, C. B.; Lee, S. H. , Applications of micromixing technology. Analyst, 2010. 135: p. 460-473.
44. Jang, L.S.K., W. H. and 2007, 619–626., Peristaltic piezoelectric micropump system for biomedical applications. Biomed. Microdevices, 2007. 9: p. 616-626.
45. Lei, K.F.L., W. C.; Suen, Y. K.; Li, W. J.; Yam, Y.; Ho, H. P.; Kong, S. K., A vortex-pump based optically-transparent microfluidic platform for biotech and medical applications. Proc. Inst. Mech. Eng. H, 2007. 221: p. 129-141.
46. Amirouche, F.Z., Y.; Johnson, T.2009, 15, 647–666., Current micropump technologies and their biomedical applications. Microsystem Technol. , 2009. 15: p. 647-666.
47. Oh, K.W.A., C. H., A review of microvalves. J. Micromechanical Microengineering, 2006. 16: p. R13-R39.
48. Zeng, S.L., B.; Su, X.; Qin, J.; Lin, B., Microvalve-actuated precise control of individual droplets in microfluidic devices. . Lab Chip, 2009. 9: p. 1340-1343.
49. Lee, D.S., P.; Mahyuddin, A.; Choolani, M.; Xu, G., Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device. J. Chromatography A, 2010. 1217: p. 1862-1866.
50. He, M.N., J.; Julian, B. A.; Herr, A. E., Membrane-assisted online renaturation for automated microfluidic lectin blotting. J. Am. Chem. Soc., 2011. 133: p. 19610-19613.
51. He, P.G., G.; Haswell, S. J., Development of enzyme immobilized monolith micro-reactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics. . Microfluidics and Nanofluidics, 2010. 8: p. 565-573.
52. McCalla, S.E.T., A., Microfluidic reactors for diagnostics applications. . Annu. Rev. Biomed. Eng., 2011. 13: p. 321-343.
53. Sheng, J.Z., L.; Lei, J.; Ju, H., Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose. Anal. Chim. Acta 2012. 709: p. 41-46.
54. Gossett, D.R.W., W. M.; Mach, A. J.; Hur, S. C.; Tse, H. T. K.; Lee, W.; Amini, H.; Carlo, D. D., Label-free cell separation and sorting in microfluidic system. Anal. Bioanal. Chem., 2010. 397: p. 3249-3267.
55. Zengerle, S.H.a.R., Microfluidic platforms for lab-on-a-chip applications. Lab Chip, 2007. 7: p. 1094-1110.
56. David J. Guckenberger, T.E.d.G., Alwin M. D. Wan, David J. Beebe and Edmond W. K. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip, 2015. 15: p. 2364-2378.
57. Anoop N. Samant, N.B.D., Laser machining of structural ceramics-A review. Journal of the European Ceramic Society, 2009. 29: p. 969-993.
58. Chryssolouris, G., Laser machining theory and practice. Springer-Verlag, 1991. New York.
59. Dubey, A.K.a.Y., V., Optimization of kerf quality during pulsed laser cutting of aluminium alloy sheet. J. Mater. Process. Technol., 2008. 204(1-3): p. 412-418.
60. Chen M. Fei., C.Y.P., Hsiao W. T., Gu Z. P., Laser direct write patterning technique of indium tin oxide film. Thin Solid Films, 2007. 515: p. 8515-8518.
61. N. Wilke, A.M., S.-R. Ye, A. Morrissey, Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics Journal 36 (2005) 650–656, 2005. 36: p. 650-656.
62. Rabih Zaouk, B.Y.P., and M.J. Madou, Introduction to microfabrication techniques. 2006. 321.
63. Whitesides, G., et al., Soft lithography in biology and biochemistry. Annual review of biomedical engineering, 2001. 3(1): p. 335-373.
64. Choi, J., et al., Fabrication of various cross-sectional shaped polymer microchannels by a simple PDMS mold based stamping method. Biochip journal, 2012. 6(3): p. 240-246.
65. Wang, G.-J., et al., Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography. Journal of micromechanics and microengineering, 2007. 17(10): p. 2000-2005.
66. McCormick, R.M., R.J. Nelson, M.G. Alonso-Amigo, J. Benvegnu, and H.H. Hooper., Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem., 1997. 69: p. 2626-2630.
67. Woo-Chul Jung, Y.-M.H., Gil-Sang Yoon, Kwang-Ho Shin, Sung-Ho Chang, Gun-Hee Kim and Myeong-Woo Cho, Micro machining of injection mold inserts for fluidic channel of polymeric biochips. Sensors, 2007. 7: p. 1643-1654.
68. Y. Morimoto, W.-H.T.a.S.T., Three- dimensional axisymmetric flow-focusing device using stereolithography. Biomed. Microdevices, 2009. 11: p. 369-377.
69. A. K. Au, W.L.a.A.F., Miniaturisation for chemistry, physics, biology, materials science and bioengineering. Lab Chip, 2014. 14: p. 1294-1301.
70. K. C. Bhargava, B.T.a.N.M., Discrete elements for 3D microfluidics. Proc. Natl. Acad. Sci. U. S. A., 2014. 111: p. 15013–15018.
71. Connelly, R., Stereolithography for microparts? MICROmanufacturing, 2010. 3(5).
72. Nan Zhang, C.J.B., David J. Browne, and Michael D. Gilchrist, Towards nano-injection molding. materialstoday, 2012. 15(5): p. 216-221.
73. Merkel, T.C., Bondar, V. I., Nagai, K., Freeman, B.D., Pinnau, I., Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). Journal of polymer science. Part B, Polymer physics, 2000. 38(3): p. 415-434.
74. Bettinger, C.J., Weinberg, E.J., Kulig, K.M., Vacanti, J.P., Wang, Y., Borenstein, J.T., Langer, R., Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable olymer Advanced materials, 2006. 18(2): p. 165-169.
75. Wang, J., Bettinger, C.J., Langer, R.S., Borenstein, J.T., Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers. Organogenesis, 2010. . 6(4): p. 212-216.
76. Johnston, I.D., McCluskey, D.K., Tan, C.K.L., Tracey, M.C., Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. Journal of Micromechanics and Microengineering, 2014. 24: p. 1-7.
77. H., C., Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows. 2009.
78. Sherman, T.F., On connecting large vessels to small. The meaning of Murray's law. The Journal of general physiology, 1981. 78(4): p. 431-53.
79. Wang, G.-J., Y.-F. Wang, and Hsu, Structure optimization of microvascular scaffolds. Biomedical Microdevices, 2006. 8(1): p. 51-58.