簡易檢索 / 詳目顯示

研究生: 高依琳
I-Ling Kao
論文名稱: 利用水熱法製備奈米結構鈦酸鹽材料及其特性鑑定
Preparation and Characterization of Nanostructured Titanate Materials using Hydrothermal Methods
指導教授: 董瑞安
Ruey-an Doong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 152
中文關鍵詞: 鈦酸鹽ㄧ維奈米材料水熱法奈米管
外文關鍵詞: titanate, nanotubes, nanowires, nanoribbons, 1-D, hydrothernal, microwave-assisted
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用鹼性水熱法可以成功的製作出各式不同型態的鈦酸鹽奈米結構材料,包括奈米薄片、奈米管、奈米線以及奈米緞帶。利用壓力釜與微波輔助輻射之兩種水熱法方法來製作鈦酸鹽奈米材料,從以往的研究報告中發現不同的參數會影響水熱法製作出的產物。在此篇研究中,系統性的探討鹼性水熱法製備方法中幾個重要的參數,包括水熱法的溫度、初始材料、鹼性水溶液的濃度、二氧化鈦固體原料與鹼性水溶液的比例,以及後續處理步驟等,並且交叉比對其參數的影響。使用商業販售之Degussa P-25與ST-01 (ISK) 二氧化鈦粉末與利用溶膠凝膠法自製的二氧化鈦奈米顆粒做為初始材料,加入3 到 10 M 的氫氧化鈉水溶液中,在壓力釜系統下,調控水熱加溫溫度在攝氏60度到230度之間,加熱一至三天;而在微波輔助輻射系統下,調控水熱加溫溫度在攝氏90度到180度之間,加熱一至二小時。發現產物會隨著水熱法加溫溫度的升高,其型態也會隨之轉變,依序從奈米顆粒/奈米薄片、奈米管、奈米線最後變成奈米緞帶結構。且發現使用不同的初始材料,隨著水熱法溫度的不同,晶形轉變模式亦不相同。在鹼性水熱法中,在相對較弱的鹼性溶液 (5 M)下,一維的奈米結構仍可以被製作出來。而後續處理步驟中,熱穩定測試是利用鍛燒一維奈米結構材料,晶形會在攝氏300度時轉換成 TiO2(B) 的晶形,溫度再升高時,晶形則會轉成銳鈦礦的型態。此外,在不同製作條件下,對於水熱法產物的能帶特性分析中,一維的鈦酸鹽奈米材料之能帶普遍比二氧化鈦奈米顆粒之能帶要大,且其能帶大小會隨水熱法製作過程中的溫度升高,而有較大的能帶。利用比表面積分析儀分析利用鹼性水熱法生成之產物,發現可以製作出來的產物之表面積大於500每克平方公尺,其數值約略為初始材料的10倍。因此,利用此方法生成之一維的鈦酸鹽奈米材料能具有相當的潛力能廣泛的應用在催化、氣體感測器、鋰電池、染料敏化太陽能電池以及生物材料等領域。


    Various morphologies of one-dimensional (1-D) nanostructured titanate materials including nanosheets, nanotubes, nanowires and nanoribbons have been synthesized by the alkaline hydrothermal method. However, the morphology and microstructure of the TiO2-derived nanostructured material are highly dependent on the preparation conditions. In this study, the effect of preparation conditions in terms of hydrothermal temperature, duration, nature of raw materials, alkaline concentration, ratios of TiO2 to caustic concentrations, washing step and post-heat treatment on the change in morphology, dimension and surface area of the nanostructured materials synthesized by conventional hydrothermal and microwave-assisted methods was systematically investigated. Three different TiO2 raw materials, Degussa P-25, ST-01 and sol-gel-derived TiO2 particles serving as the starting materials were added in 3-10 M NaOH solution at hydrothermal temperature of 60-230 □C for 1-3 d using pressure bomb system and at 90-180 □C for 1-2 h using microwave-assisted method. The morphology changed from nanoparticles/nanosheets, nanotubes, nanowires and then to nanoribbon as the hydrothermal temperatures increased from 60 to 230 □C. ST-01 has a relatively high reactivity than that of P-25 and sol-gel-derived TiO2 nanoparticle to form nanostructured material under mild conditions. In addition, the 1-D nanostructured materials have phase transformation during post-heat treatment process when calcination temperature was higher than 300 □C and the crystalline phase transferred from titanante H2Ti¬3O7¬ nanotubes to TiO2 (B) and then to anatase phase. Bandgaps of hydrothermal products have also been characterized using UV-Vis. The bandgaps of 1-D titanate nanomaterials are generally larger than TiO2 nanoparticles and increased upon increasing hydrothermal temperature. Hydrothermal products with large surface area (> 500 m2/g) have also been fabricated in this study. 1-D titanate nanomaterials have a promising potential to be applied in catalysis, gas sensor, DSSC, and biomaterial.

    中文摘要…………………………………………………………………….... I Abstract……………………………………………………………………….. II Content Index……………………………………………………………….. III Table Index…………………………………………………………………… VI Figure Index..................................................................................................... IX Chapter 1 Introduction…………………………………………………..... 1 1-1 Motivation……………………………………………………………..... 1 1-2 Objectives……………………………………………………………….. 3 Chapter 2 Background and theory…………………………………..... 4 2-1 Fabrication of 1-D titanate nanomaterials………………………............. 4 2-1-2 Chemical (Template-directed) synthesis………………………... 6 2-1-2 Electrochemical synthesis (Anodization of Ti)………………..... 8 2-1-3 Alkaline hydrothermal method…………………………………. 8 2-2 The alkaline hydrothermal method to prepare 1-D nanomaterial……..... 9 2-3 Crystal structures of 1-D nanostructured materials…………………...... 18 2-4 Mechanism for formation of 1-D titanate nanostructures……………..... 19 2-5 Microwave-assisted hydrothermal synthesis of nanostructure materials.. 26 2-6 Applications…………………………………………………………….. 30 Chapter 3 Materials and methods……………………………………… 32 3-1 Regents and materials…………………………………………………… 32 3-2 Experimental design…………………………………………………….. 32 3-3 Preparation of sol-gel-derived mesoporous TiO2 nanoparticles………… 34 3-4 Preparation of titanate nanomaterials using pressure bomb autoclave system………………………………………………………………..... 35 3-5 Microwave-assisted hydrothermal system……………………………… 36 3-6 Characterization………………………………………………………… 37 3-6-1 Scanning electron microscopy (SEM)………………………….. 37 3-6-2 Transmission electron microscopy (TEM)……………………... 37 3-6-3 Specific surface area…………………………………………..... 37 3-6-4 X-ray powder diffraction (XRPD)……………………………… 38 3-6-5 Thermo-Gravimetric Analyzer (TGA)………………………….. 39 3-6-6 UV-Vis Spectroscopy and band gap…………………………….. 39 Chapter 4 Results and discussion………………………………… 40 4-1 Fabrication of titanium dioxide nanoparticles (NPs) by sol-gel method……………………………………………………………..... 40 4-1-1 Optimization of the amount of triblock copolymer Pluronic P123……………………………………………………………... 40 4-1-2 Optimization of the ratio of HCl: water: ethanol……………….. 44 4-1-3 Calcination effect……………………………………………….. 49 4-2 Fabrication of 1-D titanate nanomaterials by pressure-bomb hydrothermal method………………………....................................... 52 4-2-1 Effect of hydrothermal temperature…………………………….. 53 4-2-2 Effect of raw materials …..……………………………….............. 66 4-2-3 Effect of alkaline concentration....................................................... 75 4-2-4 Effect of hydrothermal reaction time (duration)………………….. 85 4-2-5 Effect of ratio of titania powder to alkaline solution (TiO2/NaOH)……………………………………………………… 94 4-2-6 Effect of post-treatment…………………………………………... 101 4-2-6-1 Post heat-treatment (calcination)………………………..... 101 4-2-6-2 post-washing……………………………………………… 110 4-3 Microwave-assisted hydrothermal method……………………………... 117 4-3-1 Effect of hydrothermal temperature………………………… 118 4-3-2 Effect of alkaline concentration…………………………….. 131 4-3-3 Effect of reaction time…………………………………….... 136 4-3-4 Effect of heat-treatment…………………………………….. 140 Chapter 5 Conclusions…………………………………………………….. 143 References…………………………………………………………………….. 144

    1. Patzke, G. R.; Krumeich, F.; Nesper, R., Oxidic nanotubes and nanorods - Anisotropic modules for a future nanotechnology. Angewandte Chemie-International Edition 2002, 41 (14), 2446-2461.
    2. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials 2003, 15 (5), 353-389.
    3. Gu, Z. Z.; Horie, R.; Kubo, S.; Yamada, Y.; Fujishima, A.; Sato, O., Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angewandte Chemie-International Edition 2002, 41 (7), 1153-1156.
    4. Chatterjee, D.; Dasgupta, S., Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2005, 6 (2-3), 186-205.
    5. Peng, T. Y.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K., Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. Journal of Physical Chemistry B 2005, 109 (11), 4947-4952.
    6. Crepaldi, E. L.; Soler-Illia, G. J. D. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C., Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2. Journal of the American Chemical Society 2003, 125 (32), 9770-9786.
    7. Shchukin, D. G.; Caruso, R. A., Inorganic macroporous films from preformed nanoparticles and membrane templates: Synthesis and investigation of photocatalytic and photoelectrochemical properties. Advanced Functional Materials 2003, 13 (10), 789-794.
    8. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
    9. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C., Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Advanced Materials 2006, 18 (21), 2807-2824.
    10. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of titanium oxide nanotube. Langmuir 1998, 14 (12), 3160-3163.
    11. Chen, Q.; Zhou, W. Z.; Du, G. H.; Peng, L. M., Trititanate nanotubes made via a single alkali treatment. Advanced Materials 2002, 14 (17), 1208-1211.
    12. Sun, X. M.; Li, Y. D., Synthesis and characterization of ion-exchangeable titanate nanotubes. Chemistry-a European Journal 2003, 9 (10), 2229-2238.
    13. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 2004, 14 (22), 3370-3377.
    14. Yoshida, R.; Suzuki, Y.; Yoshikawa, S., Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. Journal of Solid State Chemistry 2005, 178 (7), 2179-2185.
    15. Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.; Wu, F.; Ringer, S. P.; Song, D. Y., Titanate nanotubes and nanorods prepared from rutile powder. Advanced Functional Materials 2005, 15 (8), 1310-1318.
    16. Morgado, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Araujo, A. S., A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sciences 2006, 8 (8), 888-900.
    17. Tsai, C. C.; Teng, H. S., Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chemistry of Materials 2006, 18 (2), 367-373.
    18. Yuan, Z. Y.; Su, B. L., Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2004, 241 (1-3), 173-183.
    19. Ma, R. Z.; Sasaki, T.; Bando, Y., Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations. Journal of the American Chemical Society 2004, 126 (33), 10382-10388.
    20. Wu, X.; Jiang, Q. Z.; Ma, Z. F.; Fu, M.; Shangguan, W. F., Synthesis of titania nanotubes by microwave irradiation. Solid State Communications 2005, 136 (9-10), 513-517.
    21. Ou, H. H.; Lo, S. L.; Liou, Y. H., Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment. Nanotechnology 2007, 18 (17)
    22. Cao, J.; Sun, J. Z.; Li, H. Y.; Hong, J.; Wang, M., A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires. Journal of Materials Chemistry 2004, 14 (7), 1203-1206.
    23. Kavan, L.; Kalbac, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M., Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chemistry of Materials 2004, 16 (3), 477-485.
    24. Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S., Formation of titania nanotubes and applications for dye-sensitized solar cells. Journal of the Electrochemical Society 2003, 150 (8), G488-G493.
    25. Cozzoli, P. D.; Kornowski, A.; Weller, H., Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. Journal of the American Chemical Society 2003, 125 (47), 14539-14548.
    26. Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R., Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chemistry of Materials 1997, 9 (11), 2544-2550.
    27. Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R., Sol-gel template synthesis of semiconductor nanostructures. Chemistry of Materials 1997, 9, (3), 857-862.
    28. Hoyer, P., Formation of a titanium dioxide nanotube array. Langmuir 1996, 12 (6), 1411-1413.
    29. Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa, S., Formation of titania nanotubes with high photo-catalytic activity. Chemistry Letters 2000 (8), 942-943.
    30. Kobayashi, S.; Hanabusa, K.; Hamasaki, N.; Kimura, M.; Shirai, H.; Shinkai, S., Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chemistry of Materials 2000, 12 (6), 942-943.
    31. Yu, H. G.; Yu, J. G.; Cheng, B.; Liu, S. W., Novel preparation and photocatalytic activity of one-dimensional TiO2 hollow structures. Nanotechnology 2007, 18 (6).
    32. Caruso, R. A.; Schattka, J. H.; Greiner, A., Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers. Advanced Materials 2001, 13 (20), 1577-1579.
    33. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C., Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2001, 16 (12), 3331-3334.
    34. Macak, J. M.; Tsuchiya, H.; Taveira, L.; Ghicov, A.; Schmuki, P., Self-organized nanotubular oxide layers on Ti-6A1-7Nb and Ti-6A1-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research Part A 2005, 75A (4), 928-933.
    35. Ruan, C. M.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry B 2005, 109 (33), 15754-15759.
    36. Varghese, O. K.; Gong, D. W.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials 2003, 15 (7-8), 624-627.
    37. Varghese, O. K.; Gong, D. W.; Paulose, M.; Ong, K. G.; Grimes, C. A., Hydrogen sensing using titania nanotubes. Sensors and Actuators B-Chemical 2003, 93 (1-3), 338-344.
    38. Varghese, O. K.; Grimes, C. A., Metal oxide nanoarchitectures for environmental sensing. Journal of Nanoscience and Nanotechnology 2003, 3 (4), 277-293.
    39. Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A., A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. Journal of Materials Research 2004, 19 (2), 628-634.
    40. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Enhanced photocleavage of water using titania nanotube arrays. Nano Letters 2005, 5 (1), 191-195.
    41. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Titania nanotubes prepared by chemical processing. Advanced Materials 1999, 11, (15), 1307-1311.
    42. Nakahira, A.; Kubo, T.; Yamasaki, Y.; Suzuki, T.; Ikuhara, Y., Synthesis of Pt-entrapped titanate nanotubes. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2005, 44 (20-23), L690-L692.
    43. Morgado, E.; de Abreu, M. A. S.; Moure, G. T.; Marinkovic, B. A.; Jardim, P. M.; Araujo, A. S., Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chemistry of Materials 2007, 19, (4), 665-676.
    44. Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M., Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters 2001, 79 (22), 3702-3704.
    45. Chen, Q.; Du, G. H.; Zhang, S.; Peng, L. M., The structure of trititanate nanotubes. Acta Crystallographica Section B-Structural Science 2002, 58, 587-593.
    46. Ma, R. Z.; Bando, Y.; Sasaki, T., Nanotubes of lepidocrocite titanates. Chemical Physics Letters 2003, 380 (5-6), 577-582.
    47. Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)(2). Dalton Transactions 2003 (20), 3898-3901.
    48. Chen, Y. F.; Lee, C. Y.; Yeng, M. Y.; Chiu, H. T., Preparing titanium oxide with various morphologies. Materials Chemistry and Physics 2003, 81 (1), 39-44.
    49. Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G., TiO2-B nanowires. Angewandte Chemie-International Edition 2004, 43, (17), 2286-2288.
    50. Tsai, C. C.; Teng, H. S., Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials 2004, 16, (22), 4352-4358.
    51. Suzuki, Y.; Yoshikawa, S., Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. Journal of Materials Research 2004, 19 (4), 982-985.
    52. Yoshida, R.; Suzuki, Y.; Yoshikawa, S., Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Materials Chemistry and Physics 2005, 91 (2-3), 409-416.
    53. Ma, R. Z.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y., Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. Journal of Physical Chemistry B 2005, 109 (13), 6210-6214.
    54. Poudel, B.; Wang, W. Z.; Dames, C.; Huang, J. Y.; Kunwar, S.; Wang, D. Z.; Banerjee, D.; Chen, G.; Ren, Z. F., Formation of crystallized titania nanotubes and their transformation. into nanowires. Nanotechnology 2005, 16 (9), 1935-1940.
    55. Qamar, M.; Yoon, C. R.; Oh, H. J.; Kim, D. H.; Jho, J. H.; Lee, K. S.; Lee, W. J.; Lee, H. G.; Kim, S. J., Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 2006, 17 (24), 5922-5929.
    56. Pavasupree, S.; Ngamsinlapasathian, S.; Nakajima, M.; Suzuki, Y.; Yoshikawa, S., Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. Journal of Photochemistry and Photobiology a-Chemistry 2006, 184 (1-2), 163-169.
    57. Daoud, W. A.; Pang, G. K. H., Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions. Journal of Physical Chemistry B 2006, 110 (51), 25746-25750.
    58. Menzel, R.; Peiro, A. M.; Durrant, J. R.; Shaffer, M. S. P., Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chemistry of Materials 2006, 18 (25), 6059-6068.
    59. Wu, D.; Liu, J.; Zhao, X. N.; Li, A. D.; Chen, Y. F.; Ming, N. B., Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chemistry of Materials 2006, 18 (2), 547-553.
    60. Tsai, C. C.; Nian, J. N.; Teng, H. S., Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Applied Surface Science 2006, 253 (4), 1898-1902.
    61. Yu, Y. X.; Xu, D. S., Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts. Applied Catalysis B-Environmental 2007, 73 (1-2), 166-171.
    62. Horvath, E.; Kukovecz, A.; Konya, Z.; Kiricsi, I., Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chemistry of Materials 2007, 19 (4), 927-931.
    63. Yuan, Z. Y.; Colomer, J. F.; Su, B. L., Titanium oxide nanoribbons. Chemical Physics Letters 2002, 363 (3-4), 362-366.
    64. Zhang, M.; Jin, Z. S.; Zhang, J. W.; Guo, X. Y.; Yang, H. J.; Li, W.; Wang, X. D.; Zhang, Z. J., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)(2). Journal of Molecular Catalysis a-Chemical 2004, 217 (1-2), 203-210.
    65. Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H., Synthesis of nanotube from a layered H2Ti4O9 center dot H2O in a hydrothermal treatment using various titania sources. Journal of Materials Science 2004, 39 (13), 4239-4245.
    66. Armstrong, G.; Armstrong, A. R.; Canales, J.; Bruce, P. G., Nanotubes with the TiO2-B structure. Chemical Communications 2005, (19), 2454-2456.
    67. Yang, H. G.; Zeng, H. C., Synthetic Architectures of TiO2/H2Ti5O11 center dot H2O,ZnO/H2Ti5O11 center dot H2O,ZnO/TiO2/H2Ti5O11 center dot H2O, and ZnO/TiO2 nanocomposites. Journal of the American Chemical Society 2005, 127 (1), 270-278.
    68. Hou, W. H.; Yan, Q. J.; Pang, B. C.; Fu, X. C., Synthesis and Characterization of Alumina-Pillared Layered Tetratitanates with Different Interlayer Spacings. Journal of Materials Chemistry 1995, 5 (1), 109-114.
    69. Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K., Microstructure and formation mechanism of titanium dioxide nanotubes. Chemical Physics Letters 2002, 365 (5-6), 427-431.
    70. Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N., Formation mechanism of TiO2 nanotubes. Applied Physics Letters 2003, 82 (2), 281-283.
    71. Zhang, S.; Peng, L. M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z., Formation mechanism of H2Ti3O7 nanotubes. Physical Review Letters 2003, 91 (25), 256103-1
    -256103-4.
    72. Kukovecz, A.; Hodos, N.; Horvath, E.; Radnoczi, G.; Konya, Z.; Kiricsi, I., Oriented crystal growth model explains the formation of titania nanotubes. Journal of Physical Chemistry B 2005, 109 (38), 17781-17783.
    73. Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T., Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry-a European Journal 2005, 11 (2), 440-452.
    74. de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A., Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews 2005, 34 (2), 164-178.
    75. Hu, J. T.; Odom, T. W.; Lieber, C. M., Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research 1999, 32 (5), 435-445.
    76. Wu, Y. Y.; Yan, H. Q.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. D., Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chemistry-a European Journal 2002, 8 (6), 1261-1268.
    77. Wang, H.; Zhu, J. M.; Zhu, J. J.; Yuan, L. M.; Chen, H. Y., Novel microwave-assisted solution-phase approach to radial arrays composed of prismatic antimony trisulfide whiskers. Langmuir 2003, 19 (26), 10993-10996.
    78. Liu, X. Y.; Tian, B. Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y., Microwave-assisted solvothermal synthesis of radial ZnS nanoribbons. Chemistry Letters 2004, 33 (5), 522-523.
    79. Hu, X. L.; Zhu, Y. J.; Wing, S. W., Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Materials Chemistry and Physics 2004, 88 (2-3), 421-426.
    80. Lu, Q. Y.; Gao, F.; Komarneni, S., Microwave-assisted synthesis of one-dimensional nanostructures. Journal of Materials Research 2004, 19 (6), 1649-1655.
    81. Wang, W. W.; Zhu, Y. J., Synthesis of PbCrO4 and Pb2CrO5 rods via a microwave-assisted ionic liquid method. Crystal Growth & Design 2005, 5 (2), 505-507.
    82. Zhu, Y. J.; Hu, X. L., Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Materials Letters 2004, 58 (7-8), 1234-1236.
    83. Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L., Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie-International Edition 2004, 43 (11), 1410-1414.
    84. Yu, J. C.; Hu, X. L.; Quan, L. B.; Zhang, L. Z., Microwave-assisted synthesis and in-situ self-assembly of coaxial Ag/C nanocables. Chemical Communications 2005, (21), 2704-2706.
    85. Wang, Y. A.; Yang, J. J.; Zhang, J. W.; Liu, H. J.; Zhang, Z. J., Microwave-assisted preparation of titanate nanotubes. Chemistry Letters 2005, 34 (8), 1168-1169.
    86. Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C., Microwave-assisted synthesis of silver nanorods. Journal of Materials Research 2004, 19 (2), 469-473.
    87. Zhang, J. W.; Wang, Y. A.; Yang, J. J.; Chen, J. M.; Zhang, Z. J., Microwave-assisted synthesis of potassium titanate nanowires. Materials Letters 2006, 60 (24), 3015-3017.
    88. Jia, X. T.; He, W.; Zhang, X. D.; Zhao, H. S.; Li, Z. M.; Feng, Y. J., Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores. Nanotechnology 2007, 18 (7).
    89. Fujishima, A.; Zhang, X. T., Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie 2006, 9 (5-6), 750-760.
    90. Lin, C. H.; Chien, S. H.; Chao, J. H.; Sheu, C. Y.; Cheng, Y. C.; Huang, Y. J.; Tsai, C. H., The synthesis of sulfated titanium oxide nanotubes. Catalysis Letters 2002, 80 (3-4), 153-159.
    91. Kleinhammes, A.; Wagner, G. W.; Kulkarni, H.; Jia, Y. Y.; Zhang, Q.; Qin, L. C.; Wu, Y., Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls. Chemical Physics Letters 2005, 411 (1-3), 81-85.
    92. Idakiev, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L., Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Applied Catalysis a-General 2005, 281 (1-2), 149-155.
    93. Akita, T.; Okumura, M.; Tanaka, K.; Ohkuma, K.; Kohyama, M.; Koyanagi, T.; Date, M.; Tsubota, S.; Haruta, M., Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst. Surface and Interface Analysis 2005, 37 (2), 265-269.
    94. Wang, M.; Guo, D. J.; Li, H. L., High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry 2005, 178 (6), 1996-2000.
    95. Wang, Y. G.; Zhang, X. G., Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochimica Acta 2004, 49 (12), 1957-1962.
    96. Hodos, M.; Horvath, E.; Haspel, H.; Kukovecz, A.; Konya, Z.; Kiricsi, I., Photo sensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chemical Physics Letters 2004, 399 (4-6), 512-515.
    97. Xu, J. C.; Lu, M.; Guo, X. Y.; Li, H. L., Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. Journal of Molecular Catalysis a-Chemical 2005, 226 (1), 123-127.
    98. Lin, C. H.; Lee, C. H.; Chao, J. H.; Kuo, C. Y.; Cheng, Y. C.; Huang, W. N.; Chang, H. W.; Huang, Y. M.; Shih, M. K., Photocatalytic generation of H-2 gas from neat ethanol over Pt/TiO2 nanotube catalysts. Catalysis Letters 2004, 98 (1), 61-66.
    99. Shyue, J. J.; Cochran, R. E.; Padture, N. P., Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions. Journal of Materials Research 2006, 21 (11), 2894-2903.
    100. Wang, G.; Wang, Q.; Lu, W.; Li, J. H., Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors. Journal of Physical Chemistry B 2006, 110 (43), 22029-22034.
    101. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C., Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. Journal of Physical Chemistry B 2005, 109 (41), 19422-19427.
    102. Umek, P.; Cevc, P.; Jesih, A.; Gloter, A.; Ewels, C. P.; Arcon, D., Impact of structure and morphology on gas adsorption of titanate-based nanotubes and nanoribbons. Chemistry of Materials 2005, 17 (24), 5945-5950.
    103. Li, J. R.; Tang, Z. L.; Zhang, Z. T., Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chemistry of Materials 2005, 17 (23), 5848-5855.
    104. Zhang, H.; Li, G. R.; An, L. P.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y., Electrochemical lithium storage of titanate and titania nanotubes and nanorods. Journal of Physical Chemistry C 2007, 111 (16), 6143-6148.
    105. Kavan, L.; Gratzel, M.; Rathousky, J.; Zukal, A., Nanocrystalline TiO2 (anatase) electrodes: Surface morphology, adsorption, and electrochemical properties. Journal of the Electrochemical Society 1996, 143 (2), 394-400.
    106. Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niihara, K.; Yanagida, S., Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Physical Chemistry Chemical Physics 2005, 7 (24), 4157-4163.
    107. Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M., Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry 2002, 70 (6), 418-420.
    108. Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Grimes, C. A., Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Journal of Physics D-Applied Physics 2006, 39 (12), 2498-2503.
    109. Oh, S. H.; Finones, R. R.; Daraio, C.; Chen, L. H.; Jin, S. H., Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005, 26 (24), 4938-4943.
    110. Kubota, S.; Johkura, K.; Asanuma, K.; Okouchi, Y.; Ogiwara, N.; Sasaki, K.; Kasuga, T., Titanium oxide nanotubes for bone regeneration. Journal of Materials Science-Materials in Medicine 2004, 15, (9), 1031-1035.
    111. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279 (5350), 548-552.
    112. Niesz, K.; Yang, P. D.; Somorjai, G. A., Sol-gel synthesis of ordered mesoporous alumina. Chemical Communications 2005, (15), 1986-1987.
    113. Yang, P. D.; Deng, T.; Zhao, D. Y.; Feng, P. Y.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D., Hierarchically ordered oxides. Science 1998, 282 (5397), 2244-2246.
    114. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F., General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chemistry of Materials 2002, 14 (8), 3284-3294.
    115. Isley, S. L.; Penn, R. L., Relative brookite and anatase content in sol-gel-synthesized titanium dioxide nanoparticles. Journal of Physical Chemistry B 2006, 110 (31), 15134-15139.
    116. Hu, Y.; Tsai, H. L.; Huang, C. L., Phase transformation of precipitated TiO2 nanoparticles. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2003, 344 (1-2), 209-214.
    117. Feist, T. P.; Davies, P. K., The Soft Chemical Synthesis of TiO2 (B) from Layered Titanates. Journal of Solid State Chemistry 1992, 101 (2), 275-295.
    118. Seo, D. S.; Lee, J. K.; Kim, H., Preparation of nanotube-shaped TiO2 powder. Journal of Crystal Growth 2001, 229 (1), 428-432.
    119. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95 (3), 735-758.
    120. Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H., Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. Journal of the American Chemical Society 1996, 118 (35), 8329-8335.
    121. Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T., Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. Journal of the American Chemical Society 2004, 126 (18), 5851-5858.
    122. Wang, W. W.; Zhu, Y. J., Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods. Materials Research Bulletin 2005, 40 (11), 1929-1935.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE