簡易檢索 / 詳目顯示

研究生: 許銘哲
Hsu, Ming-Che
論文名稱: 次ppm級丙酮氣體氮化銦薄膜感測器
Sub-ppm Acetone Gas Sensors Based on Ultrathin InN Epilayer
指導教授: 葉哲良
Yeh, J. Andrew
口試委員: 何明志
林寬鋸
黃國政
王玉麟
葉哲良
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: 氮化銦丙酮感測器白金
外文關鍵詞: indium nitride, InN, acetone sensor, Pt
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來的研究發現,偵測人體呼氣中的丙酮濃度可用來做為非侵入式檢測糖尿病的方法。而氮化銦因其具有表面電子累積層等特性,可用來製作具有高靈敏度的丙酮氣體感測器。
    本研究探討利用超薄膜 (約10 nm) 磊晶氮化銦(indium nitrite)製成之電阻式丙酮感測器之偵測反應特性,並比較裸面氮化銦與在氮化銦表面鍍上一層10 nm白金催化層的感測特性差異。結果證明在氮化銦表面鍍上10 nm白金層可提高感測器對丙酮的反應。在空氣的環境中,裸面氮化銦感測器在200°C的操作溫度下會對10 ppm的丙酮產生16 % (37.6 µA)的電流變化率,反應時間為 1262秒。在丙酮濃度介於0.4 ppm – 20 ppm的範圍內,電流變化率取對數和丙酮濃度取對數( log(△I/I0) to log(Cacetone) )會存在一線性關係,其斜率為0.58。
    而鍍上白金薄膜的氮化銦感測器則是在200°C的操作溫度下會對10 ppm的丙酮產生28.7 % (94 µA) 的電流變化率,反應時間為150 秒。電流變化率取對數和丙酮濃度取對數會存在一線性關係,其斜率為0.50。裸面氮化銦感測器和具白金層之氮化銦感測器皆可偵測到濃度低於0.4 ppm的丙酮氣體。而鍍上白金薄膜後,電流變化可提高約2.5倍,並且反應時間縮短了8.4倍。
    本研究亦探討了二氧化碳和氧氣對具白金層之氮化銦感測器的影響。發現當環境中氧氣濃度由原本空氣的21 %減少為16 %時,對應的電流變化率為4.6 % (15 µA),相當於0.4 ppm丙酮所引起的電流變化率。另外,對於5 % CO2有7.6 % (26.4 µA)的電流變化率,相當於1 ppm丙酮所引起的電流變化率。


    Detection of acetone concentration in exhaled breath can be developed to diagnose diabetes as a noninvasive methods. And indium nitride (InN) epilayer, which have some special electronic property such as electron accumulation, can be used to fabricate acetone gas sensors with high sensitivity.
    Acetone gas sensors based on ultrathin (~10 nm) InN epilayers with and without a thin catalytic platinum (Pt) layer have been fabricated and demonstrated. The bare InN sensor exhibits a maximum response at 200 °C in air ambiences. The maximum response of current variation under 10 ppm acetone exposure in air ambience at 200 °C corresponding to 16 % ( 37.6 µA ), with a response time of 1262 s. The plot of log(△I/I0) to log(Cacetone) shows a linear relationship with a slope of 0.58 at a acetone concentration range from 0.4 ppm to 20 ppm.
    On the other hand, the Pt-coated InN sensor exhibits a higher response to acetone. At 200 °C, the sensor shows a high current variation ratio of 28.7 % (94 µA) and a short response time of 150 s under the same gas exposure environment. The plot of log(△I/I0) to log(Cacetone) shows a linear relationship with a slope of 0.50 at a acetone concentration range from 0.4 ppm to 20 ppm. In comparison with a bare InN sensor tested in the same conditions, the Pt catalytic layer enhances the current variation by 2.5 times. The detection limits of the sensors with and without a Pt layer are both less than 0.4 ppm.
    The influences of carbon dioxide and oxygen on Pt-coated InN sensors have been investigated. The current variation ratio is 4.6 % (15 µA) when oxygen concentration drop off from 21 % to 16 %, near to the current variation ratio under 0.4 ppm acetone exposure. And the current variation ratio under 5 % CO2 in air ambiance is 7.6 % (26.4 µA), near to the current variation ration under 1 ppm acetone exposure.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xii 符號表 xiii 第一章 序論 1 1.1. 研究背景 1 1.2. 丙酮特性及應用簡介 2 1.3. 糖尿病簡介 3 1.4. 現行糖尿病檢測方法 4 1.5. 糖尿病呼氣檢測 5 1.6. 研究動機及目的 8 第二章 文獻回顧 10 2.1. 丙酮氣體感測器文獻回顧 10 2.1.1. 金氧半場效電晶體感測器 10 2.1.2. 電阻式感測器 11 2.1.3. 電化學感測器 15 2.1.4. 表面聲波感測器 16 2.1.5. 石英晶體微天平 17 2.1.6. 導電高分子感測器 18 2.1.7. 光定位電位測定感測器 19 2.1.8. 丙酮感測器整理表 20 2.2. 氮化銦薄膜特性簡介 22 2.3. 氮化銦薄膜丙酮氣體感測器之感測機制 24 2.3.1 裸面氮化銦薄膜感測氣體機制 25 第三章 元件設計及製作 30 3.1. 氮化銦感測器概述 30 3.2. 磊晶成長氮化銦薄膜概述 33 3.3. 感測器製造流程 35 3.3.1. 感測元件製程 35 3.3.2. 加熱器製程 37 3.3.3. 感測器組裝及打線 39 3.4. 量測儀器和實驗流程 40 3.4.1. 儀器設置 40 3.4.2. 量測方法 45 第四章 實驗結果與討論 47 4.1. 裸面氮化銦感測器特性 47 4.1.1. 在不同操作溫度下的反應 47 4.1.2. 對不同濃度丙酮氣體的反應 49 4.2. 具白金催化層之氮化銦感測器特性 51 4.2.1. 在不同操作溫度下的反應 51 4.2.2. 對不同濃度丙酮氣體的反應 53 4.3. 二氧化碳與氧氣之選擇性探討 55 4.3.1. 氧氣濃度之影響 56 4.3.2. 二氧化碳濃度之影響 60 4.3.3.在不同背景氣體下對丙酮的反應 64 4.3.4. 對二氧化碳及氧氣的反應 66 4.3.5. 二氧化碳及氧氣濃度對丙酮感測的干擾 68 第五章 結論 70 第六章 未來工作 72 參考文獻 72

    1. C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, "Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization," Journal of Chromatography B 810, 269-275 (2004).
    2. A. Manolis, "The diagnostic potential of breath analysis," Clinical Chemistry 29, 5 (1983).
    3. 王世宏, "電阻式丙酮氣體感測器之導電高分子電極製備與感測性質," 化學工程學系, 東海大學 (2005).
    4. Q. Zhang, P. Wang, J. Li, and X. Gao, "Diagnosis of diabetes by image detection of breath using gas-sensitive laps," Biosensors and Bioelectronics 15, 249-256 (2000).
    5. K. Moorhead, D. Lee, J. Chase, A. Moot, K. Ledingham, J. Scotter, R. Allardyce, S. Senthilmohan, and Z. Endre, "Classifying algorithms for SIFT-MS technology and medical diagnosis," Computer methods and programs in biomedicine 89, 226-238 (2008).
    6. P. Mayes, R. Murray, D. Granner, and V. Rodwell, "Harper's biochemistry," Biologic Oxidation. McGraw-Hill Companies Inc., New York, 130-136 (2000).
    7. 徐佳穗, "利用薄膜技術製備電化學式丙酮感測器之研究," 化學工程學系, 成功大學(2003)
    8. N. Makisimovich, V. Vorotyntsev, N. Nikitina, O. Kaskevich, P. Karabun, and F. Martynenko, "Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis," Sensors and Actuators B: Chemical 36, 419-421 (1996).
    9. H. Nagle, R. Gutierrez-Osuna, and S. Schiffman, "The how and why of electronic noses," Spectrum, IEEE 35, 22-31 (2002).
    10. I. Lundström, "Why bother about gas-sensitive field-effect devices?," Sensors and Actuators A: Physical 56, 75-82 (1996).
    11. T. Eklöv, "Methods to improve the selectivity of gas sensors systems," (Linköping University, 1999).
    12. S. Chakraborty, D. Banerjee, I. Ray, and A. Sen, "Detection of biomarker in breath: A step towards noninvasive diabetes monitoring," Current science 94, 237-242 (2008).
    13. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, and G. Sberveglieri, "Controlled growth and sensing properties of In2O3 nanowires," Crystal Growth and Design 7, 2500-2504 (2007).
    14. L. Wang, A. Teleki, S. Pratsinis, and P. Gouma, "Ferroelectric WO3 nanoparticles for acetone selective detection," Chemistry of Materials 20, 4794-4796 (2008).
    15. P. Sahay, "Zinc oxide thin film gas sensor for detection of acetone," Journal of Materials Science 40, 4383-4385 (2005).
    16. R. Khadayate, J. Sali, and P. Patil, "Acetone vapor sensing properties of screen printed WO3 thick films," Talanta 72, 1077-1081 (2007).
    17. N. Barsan, and U. Weimar, "Conduction model of metal oxide gas sensors," Journal of Electroceramics 7, 143-167 (2001).
    18. S. Ryabtsev, A. Shaposhnick, A. Lukin, and E. Domashevskaya, "Application of semiconductor gas sensors for medical diagnostics," Sensors and Actuators B: Chemical 59, 26-29 (1999).
    19. W. Kwok, Y. Bow, W. Chan, M. Poon, P. Wan, and H. Wong, "Study of porous silicon gas sensor," (IEEE, 2002), pp. 80-83.
    20. D. Lee, J. Lee, Y. Lee, and D. Lee, "GaN thin films as gas sensors," Sensors and Actuators B: Chemical 89, 305-310 (2003).
    21. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, "Carbon nanotube sensors for gas and organic vapor detection," Nano Letters 3, 929-933 (2003).
    22. C. Wang, Y. Weng, and T. Chou, "Acetone sensor using lead foil as working electrode," Sensors and Actuators B: Chemical 122, 591-595 (2007).
    23. 黃仕泓, and 柯正浩, "表面聲波感測器之前瞻研究," 物理雙月刊 (2004).
    24. M. Penza, G. Cassano, A. Sergi, C. Lo Sterzo, and M. Russo, "SAW chemical sensing using poly-ynes and organometallic polymer films," Sensors and Actuators B: Chemical 81, 88-98 (2001).
    25. Z. Ying, Y. Jiang, X. Du, G. Xie, J. Yu, and H. Tai, "Polymer coated sensor array based on quartz crystal microbalance for chemical agent analysis," European Polymer Journal 44, 1157-1164 (2008).
    26. H. Huang, J. Zhou, S. Chen, L. Zeng, and Y. Huang, "A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis," Sensors and Actuators B: Chemical 101, 316-321 (2004).
    27. L. Jiang, H.-K. Jun, Y.-S. Hoh, J.-O. Lim, D.-D. Lee, and J.-S. Huh, "Sensing characteristics of polypyrrole-poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization," Sensors and Actuators B: Chemical 105, 132-137 (2005).
    28. J.-B. Yu, H.-G. Byun, M.-S. So, and J.-S. Huh, "Analysis of diabetic patient's breath with conducting polymer sensor array," Sensors and Actuators B: Chemical 108, 305-308 (2005).
    29. H. Sundgren, F. Winquist, I. Lukkari, and I. Lundstrom, "Artificial neural networks and gas sensor arrays: quantification of individual components in a gas mixture," Measurement Science and Technology 2, 464 (1991).
    30. Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura, and N. Yamazoe, "Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consomme´soup," Sensors and Actuators B: Chemical 25, 623-627 (1995).
    31. A. Bhuiyan, A. Hashimoto, and A. Yamamoto, "Indium nitride (InN): A review on growth, characterization, and properties," Journal of Applied Physics 94, 2779 (2003).
    32. H. Lu, W. Schaff, L. Eastman, and C. Stutz, "Surface charge accumulation of InN films grown by molecular-beam epitaxy," Applied Physics Letters 82, 1736 (2003).
    33. I. Mahboob, T. Veal, L. Piper, C. McConville, H. Lu, W. Schaff, J. Furthmuller, and F. Bechstedt, "Origin of electron accumulation at wurtzite InN surfaces," Physical Review B 69, 201307 (2004).
    34. 何建霖, "氮化銦氫離子感應場效電晶體," 奈米工程與微系統研究所, 清華大學(2008).
    35. F. Hellegouarc'h, F. Arefi-Khonsari, R. Planade, and J. Amouroux, "PECVD prepared SnO2 thin films for ethanol sensors," Sensors and Actuators B: Chemical 73, 27-34 (2001).
    36. M. Franke, T. Koplin, and U. Simon, "Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?," Small 2, 36-50 (2006).
    37. R. Cooper, G. Advani, and A. Jordan, "Gas sensing mechanisms in SnO2 thin films," Journal of Electronic Materials 10, 455-472 (1981).
    38. 張毓華, "利用氮化銦磊晶超薄膜製作之氫氣感測器," 奈米工程與微系統研究所清華大學(2010).
    39. M. Wu, S. Zhou, A. Vantomme, Y. Huang, H. Wang, and H. Yang, "High-precision determination of lattice constants and structural characterization of InN thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24, 275 (2006).
    40. C. Wu, C. Shen, H. Lin, H. Lee, and S. Gwo, "Direct evidence of 8: 9 commensurate heterojunction formed between InN and AlN on c plane," Applied Physics Letters 87, 241916 (2005).
    41. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors," Sensors 10, 2088-2106 (2010).
    42. J. Pleil, and A. Lindstrom, "Measurement of volatile organic compounds in exhaled breath as collected in evacuated electropolished canisters," Journal of Chromatography B: Biomedical Sciences and Applications 665, 271-279 (1995).
    43. D. L. A. Fernandes, T. A. Rolo, J. A. B. P. Oliveira, and M. Gomes, "A new analytical system, based on an acoustic wave sensor, for halitosis evaluation," Sensors and Actuators B: Chemical 136, 73-79 (2009).
    44. B. Moser, F. Bodrogi, G. Eibl, M. Lechner, J. Rieder, and P. Lirk, "Mass spectrometric profile of exhaled breath--field study by PTR-MS," Respiratory Physiology & Neurobiology 145, 295-300 (2005).
    45. W. Ping, T. Yi, X. Haibao, and S. Farong, "A novel method for diabetes diagnosis based on electronic nose1," Biosensors and Bioelectronics 12, 1031-1036 (1997).
    46. C. Di Natale, A. Macagnano, E. Martinelli, R. Paolesse, G. D'Arcangelo, C. Roscioni, A. Finazzi-Agro, and A. D'Amico, "Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors," Biosensors and Bioelectronics 18, 1209-1218 (2003).
    47. X. Huang, J. Liu, Z. Pi, and Z. Yu, "Detecting pesticide residue by using modulating temperature over a single SnO2-based gas sensor," Sensors 3, 361-370 (2003).
    48. W. M. Zhang, J. S. Hu, W. G. Song, and L. J. Wan, "Detection of VOCs and their concentrations by a single SnO2 sensor using kinetic information," Sensors and Actuators B: Chemical 123, 454-460 (2007).
    49. J. Huang, C. Gu, F. Meng, M. Li, and J. Liu, "Detection of volatile organic compounds by using a single temperature-modulated SnO2 gas sensor and artificial neural network," Smart materials and structures 16, 701 (2007).
    50. W. Maziarz, and T. Pisarkiewicz, "Gas sensors in a dynamic operation mode," Measurement Science and Technology 19, 055205 (2008).
    51. D. Briand, H. Wingbrant, H. Sundgren, B. van der Schoot, L. G. Ekedahl, I. Lundstrom, and N. F. de Rooij, "Modulated operating temperature for MOSFET gas sensors: hydrogen recovery time reduction and gas discrimination," Sensors and Actuators B: Chemical 93, 276-285 (2003).
    52. G. Neri, A. Bonavita, G. Micali, and N. Donato, "Design and development of a breath acetone MOS sensor for ketogenic diets control," Sensors Journal, IEEE 10, 131-136 (2010).
    53. M. Righettoni, A. Tricoli, and S. Pratsinis, "Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis," Analytical Chemistry 82, 3581-3587 (2010).
    54. M. K. Muezzinoglu, A. Vergara, R. Huerta, N. Rulkov, M. I. Rabinovich, A. Selverston, and H. D. I. Abarbanel, "Acceleration of chemo-sensory information processing using transient features," Sensors and Actuators B: Chemical 137, 507-512 (2009).
    55. A. Tangerman, "Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices," Journal of Chromatography B 877, 3366-3377 (2009).
    56. C. Shimamoto, I. Hirata, and K. I. Katsu, "Breath and blood ammonia in liver cirrhosis," Hepato-gastroenterology 47, 443-445 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE