簡易檢索 / 詳目顯示

研究生: 賴穎群
Ying-Chun Lai
論文名稱: 改良式高效能可加性白色高斯雜訊產生器-使用Wallace方法
A High Performance Additive White Gaussian Noise Generator Using the Wallace Method
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 52
中文關鍵詞: 高斯雜訊產生器
外文關鍵詞: Gaussina noise generator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通訊系統的雜訊是指在傳送和接收的正常訊號過程中所受到干擾的影響。影響通訊系統的雜訊來源有很多種,一般可以區分為系統內部的雜訊和系統外部的雜訊。大氣雜訊和人為的雜訊屬於前者,因為自然的電流或電壓震盪而使得電路或其原件所產生的散粒(shot)雜訊和熱雜訊則屬於後者。
    在通訊系統中,當傳送端送出訊號經過通訊通道到接收端時,在現實的環境中,訊號會受到雜訊的影響和干擾。因此,當我們在模擬通訊系統時,通常會加入一個『可加性白色高斯雜訊』到訊號裡,用來模擬當訊號受到雜訊的影響和干擾。而傳統上都是使用軟體來產生『可加性白色高斯雜訊』,但是利用軟體來產生高斯雜訊需要耗費較多的時間。因此,為了能夠更有效率地去模擬雜訊的影響,近年來研究如何利用硬體來產生高斯雜訊也就越來越多。
    本篇論文採用Box-Muller、Wallace和中央極限定理這三種方法,並且利用兩個不同的時脈來實現本篇論文的硬體架構。不同於過去都需要利用許多複雜的算術電路來產生高斯雜訊,本篇論文所提出來的主要架構只會用到簡單的加減法和位移,所以能很快速地產生白色高斯雜訊。此外,為了確認所產生的雜訊呈現高斯分佈,我們還利用了統計的最適度檢定法中的卡方檢定和K-S檢定來證明這個架構所產生出來的雜訊的確是高斯分佈。


    Combining the Box-Muller method, Central Limit Theorem, and the Wallace method, a hardware white Gaussian noise generator (WGNG) is proposed to simulate the noise effect appeared in the communication channel and is synthesized in a 0.18um CMOS process. Passing two statistical tests of chi-square test and Kolmogorov-Smirnov (K-S) test, the proposed noise generator can generate high-quality 666.667 million Gaussian random variables per second.
    It is different from the existing methods that require complex calculations. The proposed design only requires additions, subtractions, and shift operation in the major part. Because of only having simple operations, it is easy to achieve high performance.
    In addition, the proposed architecture is not only applied to generate the additive white Gaussian noise (AWGN), but also applied to generate the random variables with other distributions such as exponential distributions.

    摘要 I 誌謝 II 目錄 III 第一章 概論 1 第二章 文獻討論 2 第三章 理論架構 3 第四章 統計檢定 4 第五章 模擬結果與比較 5 第六章 結論 6 英文附錄 7 Abstract Contents I List of Figures III List of Tables IV Chapter 1 Introduction 1 1.1. Applications 1 1.2. Motivation 2 1.3. Thesis Organizations 3 Chapter 2 Methods Overview 5 2.1. Central Limit Theorem 5 2.2. Box-Muller method 6 2.3. Polar method 8 2.4. Wallace method 10 2.5. Ziggurat method 12 2.6. Comparisons of Previous Methods 16 Chapter 3 Proposed Architectures 17 3.1. The original architecture 17 3.2. The modified architecture 18 3.2.1. The first stage of Box-Muller 20 3.2.2. The second stage of Box-Muller 22 3.2.3. The third stage of Box-Muller 27 3.2.4. The forth stage of Box-Muller 28 3.2.5. The architecture of Wallace 28 Chapter 4 Statistic Tests 31 4.1. Chi-square test 31 4.2. Kolmogorov-Smirnov test 32 4.3. The results of the statistic tests 34 Chapter 5 Simulation Results and Comparisons 45 Chapter 6 Conclusions 49 Bibliography 51

    [1] D. U. Lee, W. Luk, J. D. Villasenor, and P. Y. K. Cheung; “A Gaussian noise generator for hardware-based simulations” IEEE Transactions on Computers, Vol. 53, Issue 12, Dec. 2004, pp. 1523-1534.
    [2] D. U. Lee, W. Luk, J. D. Villasenor, and P. Y. K. Cheung; “A hardware Gaussian noise generator for channel code evaluation” Proc. of 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, April 2003, pp. 69-78.
    [3] E. Fung, K. Leung, N. Parimi, M. Purnaprajna, and V.C. Gaudet; “ASIC implementation of a high speed WGNG for communication channel emulation” Proc. of IEEE Workshop on Signal Processing Systems, Oct. 2004, pp. 304-309
    [4] Y. Fan, and Z. Zilic; “A novel scheme of implementing high speed AWGN communication channel emulators in FPGAs” Proc. of Int’l Symposium on Circuits and Systems, Vol. 2, May 2004, pp. 877-880.
    [5] C. S. Wallace; “Fast pseudorandom generators for normal and exponential variates” ACM Transactions on Mathematical Software, Vol.22, Issue 1, March 1996, pp. 119-127.
    [6] D. U. Lee, W. Luk, J. D. Villasenor, G. Zhang, and P. H. W. Leong; “A hardware Gaussian noise generator using the Wallace method” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 13, Issue 8, Aug. 2005, pp. 911-920.
    [7] G. Marsaglia and W. W. Tsang; “The Ziggurat method for generating random variables” Journal of Statistical Software, Vol. 5, No. 8, 2000.
    [8] G. Zhang, P. H. W. Leong, D. U. Lee, J. D. Villasenor, R. C. C. Cheung, and W Luk; “Ziggurat-based hardware Gaussian random number generator” Proc. of Int’l Conf. on Field Programmable Logic and Applications, Aug. 2005, pp. 275-280.
    [9] P. L’Ecuyer; “Maximally equidistributed combined Tausworthe generators” Mathematics of Computation, Vol. 65, Issue 213, Jan. 1996, pp. 203-213.
    [10] G. Marsaglia; “DIEHARD: a battery of tests for random number generators” http://stat.fsu.edu/~geo/diehard.html, 2002.
    [11] O. Mencer and W. Luk; “Parameterized High Throughput Function Evaluation for FPGAs” Journal of VLSI Signal Processing Systems, Vol. 36, Issue 1, Jan. 2004, pp. 17-25.
    [12] 顏月珠; “實用統計方法-圖解與實例-” 台灣大學法學院圖書部, Nov. 1996.
    [13] A. Alimohammad, B. F. Cockburn, and C. Schlegel; “An iterative hardware Gaussian noise generator” Proc. of Conf. on Communications, Computers and signal Processing, Aug. 2005, pp. 649-652.
    [14] A. Gazel, E. Boutillon, J. L. Danger, and G. Gulak; “Design and performance analysis of a high speed AWGN communication channel emulator” Proc. of IEEE Conf. on Communications, Computers and signal Processing, Vol. 2, Aug. 2001, pp. 374-377.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE