研究生: |
鄭謝廷揚 Cheng, Hsieh-Ting-Yang |
---|---|
論文名稱: |
以電腦模擬並剖析雙固碳循環作用於以氫氣為能量之自營大腸桿菌 Detailed profiling of carbon fixation of in silico synthetic autotrophy with reductive tricarboxylic cycle and Calvin-Benson-Bassham cycle in Escherichia coli using hydrogen as energy source |
指導教授: |
何宗易
Ho, Tsung-Yi |
口試委員: |
張晃猷
楊雅棠 黃介辰 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 固碳作用 、大腸桿菌 |
外文關鍵詞: | flux balance analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固碳作用是無機碳以二氧化碳的形式進入生物圈最主要方式。加氧酶在大自然中是最豐富的蛋白質,加氧酶可以利用ATP的能量將二氧化碳中的碳接到醣類分子上。光自營生物透過卡爾文循環吸收大氣中的二氧化碳。然而加氧酶過慢的反應速率限制了整個卡爾文循環的進行。在本篇研究當中,我們嘗試整合並模擬還原性三羧酸循環和卡爾文循環進入到同一大腸桿菌中,希望以此改善固碳作用效率。我們加入了數個異源酶進入到大腸桿菌的代謝網路中,負責幫助細菌將二氧化碳轉換成生物能並將細菌轉換成使用氫氣做為能量來源。這樣的改變在大腸桿菌中形成了雙固碳循環也增加了它的生長速率。我們的實驗結果主要有以下幾點。(i)我們定義了兩種生長模式,碳源限制階段與氫氣限制階段。(ii)我們定義了當氫氣有限時固碳作用的不同階段。(iii)我們定義了還原性三羧酸循環當基因調控出現錯誤時會出現的次優生長模式。這些實驗結果。透過研究的成果,希望可以為未來相關的基因工程提供一個良好的研究方向。
Carbon fixation is the main route of inorganic carbon in the form of CO2 into the biosphere.
In nature, RuBisCO is the most abundant protein that photosynthetic organisms use to fix CO2 from the atmosphere through the Calvin-Benson-Bassham (CBB) cycle.
However, the CBB cycle is limited by its low catalytic rate and low energy eciency. In this work, we attempt to integrate the reductive tricarboxylic acid and CBB cycles in silico to further improve carbon fixation capacity. Key heterologous enzymes, mostly carboxylating enzymes, are inserted into the Esherichia coli core metabolic network to assimilate CO2 into biomass using hydrogen as energy source. Overall, such a strain shows enhanced growth yield with simultaneous running of dual carbon fixation cycles. Our key results include the following. (i) We identified two main growth states: carbon-limited and hydrogenlimited; (ii) we identified a hierarchy of carbon fixation usage when hydrogen supply is
limited; and (iii) we identified the alternative sub-optimal growth mode while performing genetic perturbation. The results and modeling approach can guide bioengineering projects toward optimal production using such a strain as a microbial cell factory.
[1] D. Normile, “Round and round: A guide to the carbon cycle,” Science, vol. 325,
no. 5948, pp. 1642–1643, 2009.
[2] I. A. Berg, “Ecological aspects of the distribution of dierent autotrophic co2 fixation
pathways,” Applied and Environmental Microbiology, vol. 77, no. 6, pp. 1925–1936,
2011.
[3] I. A. Berg, D. Kockelkorn, W. H. Ramos-Vera, R. F. Say, J. Zarzycki, M. H¨ugler,
B. E. Alber, and G. Fuchs, “Autotrophic carbon fixation in archaea,” Nature Reviews
Microbiology, vol. 8, pp. 447 EP –, May 2010. Review Article.
[4] T. J. Erb, “Carboxylases in natural and synthetic microbial pathways,” Applied and
Environmental Microbiology, vol. 77, no. 24, pp. 8466–8477, 2011.
[5] A. Bar-Even, E. Noor, N. E. Lewis, and R. Milo, “Design and analysis of synthetic
carbon fixation pathways,” Proceedings of the National Academy of Sciences,
vol. 107, no. 19, pp. 8889–8894, 2010.
[6] A. Bar-Even, A. Flamholz, E. Noor, and R. Milo, “Thermodynamic constraints shape
the structure of carbon fixation pathways,” Biochimica et Biophysica Acta (BBA) -
Bioenergetics, vol. 1817, no. 9, pp. 1646 – 1659, 2012.
[7] G. G. B. Tcherkez, G. D. Farquhar, and T. J. Andrews, “Despite slow catalysis and
confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly
perfectly optimized,” Proceedings of the National Academy of Sciences, vol. 103,
no. 19, pp. 7246–7251, 2006.
[8] Y. Savir, E. Noor, R. Milo, and T. Tlusty, “Cross-species analysis traces adaptation
of rubisco toward optimality in a low-dimensional landscape,” Proceedings of the
National Academy of Sciences, vol. 107, no. 8, pp. 3475–3480, 2010.
[9] N. Antonovsky, S. Gleizer, E. Noor, Y. Zohar, E. Herz, U. Barenholz, L. Zelcbuch,
S. Amram, A. Wides, N. Tepper, D. Davidi, Y. Bar-On, T. Bareia, D. Wernick,
I. Shani, S. Malitsky, G. Jona, A. Bar-Even, and R. Milo, “Sugar synthesis from co2
in Escherichia coli,” Cell, vol. 166, pp. 115–125, Jun 2016.
[10] U. Barenholz, D. Davidi, E. Reznik, Y. Bar-On, N. Antonovsky, E. Noor, and R. Milo,
“Design principles of autocatalytic cycles constrain enzyme kinetics and force low
substrate saturation at flux branch points,” eLife, vol. 6, p. e20667, feb 2017.
[11] C. A. Smith, “Physiology of the bacterial cell. a molecular approach. by f c neidhardt,
j l ingraham and m schaechter. pp 507. sinauer associates, sunderland, ma. 1990.,”
Biochemical Education, vol. 20, no. 2, pp. 124–125, 1992.
[12] F. Gong, G. Liu, X. Zhai, J. Zhou, Z. Cai, and Y. Li, “Quantitative analysis of an
engineered co2-fixing escherichia coli reveals great potential of heterotrophic co2
fixation,” Biotechnology for Biofuels, vol. 8, p. 86, Jun 2015.
[13] Z.-Y. Zhuang and S.-Y. Li, “Rubisco-based engineered escherichia coli for in situ
carbon dioxide recycling,” Bioresource Technology, vol. 150, pp. 79 – 88, 2013.
[14] V. Guadalupe-Medina, H. W. Wisselink, M. A. Luttik, E. de Hulster, J.-M. Daran,
J. T. Pronk, and A. J. van Maris, “Carbon dioxide fixation by calvin-cycle enzymes
improves ethanol yield in yeast,” Biotechnology for Biofuels, vol. 6, p. 125, Aug 2013.
[15] N. Antonovsky, S. Gleizer, and R. Milo, “Engineering carbon fixation in e. coli: from
heterologous rubisco expression to the calvinbensonbassham cycle,” Current Opinion
in Biotechnology, vol. 47, pp. 83 – 91, 2017. Tissue, cell and pathway engineering.
[16] E. Herz, N. Antonovsky, Y. Bar-On, D. Davidi, S. Gleizer, N. Prywes, L. Noda-
Garcia, K. Lyn Frisch, Y. Zohar, D. G. Wernick, A. Savidor, U. Barenholz, and
R. Milo, “The genetic basis for the adaptation of e. coli to sugar synthesis from co2,”
Nature Communications, vol. 8, no. 1, p. 1705, 2017.
[17] T. Schwander, L. Schada von Borzyskowski, S. Burgener, N. S. Cortina, and T. J. Erb,
“A synthetic pathway for the fixation of carbon dioxide in vitro,” Science, vol. 354,
no. 6314, pp. 900–904, 2016.
[18] R. G. Sawers, S. P. Ballantine, and D. H. Boxer, “Dierential expression of hydrogenase
isoenzymes in escherichia coli k-12: evidence for a third isoenzyme.,” Journal
of Bacteriology, vol. 164, no. 3, pp. 1324–1331, 1985.
[19] C. Liu, B. C. Col´on, M. Ziesack, P. A. Silver, and D. G. Nocera, “Water splitting–
biosynthetic system with co2 reduction eciencies exceeding photosynthesis,”
Science, vol. 352, no. 6290, pp. 1210–1213, 2016.
[20] T. H. Cromartie and C. T. Walsh, “Escherichia coli glyoxalate carboligase. properties
and reconstitution with 5-deazafad and 1,5-dihydrodeazafadh2.,” Journal of Biological
Chemistry, vol. 251, no. 2, pp. 329–333, 1976.
[21] S. Spaans, R.Weusthuis, J. Van Der Oost, and S. Kengen, “Nadph-generating systems
in bacteria and archaea,” Frontiers in Microbiology, vol. 6, p. 742, 2015.
[22] J. Steuber,W. Krebs, M. Bott, and P. Dimroth, “A membrane-bound nad(p)+-reducing
hydrogenase provides reduced pyridine nucleotides during citrate fermentation by
klebsiella pneumoniae,” Journal of Bacteriology, vol. 181, no. 1, pp. 241–245, 1999.
[23] O. Schmitz, G. Boison, H. Salzmann, H. Bothe, K. Schtz, S. huaWang, and T. Happe,
“Hoxea subunit specific for the pentameric bidirectional hydrogenase complex (hoxefuyh)
of cyanobacteria,” Biochimica et Biophysica Acta (BBA) - Bioenergetics,
vol. 1554, no. 1, pp. 66 – 74, 2002.
[24] M. A. Wells, J. Mercer, R. A. Mott, A. G. Pereira-Medrano, A. M. Burja, H. Radianingtyas,
and P. C. Wright, “Engineering a non-native hydrogen production pathway
into escherichia coli via a cyanobacterial [nife] hydrogenase,” Metabolic Engineering,
vol. 13, no. 4, pp. 445 – 453, 2011.
[25] B. Ø. Palsson, “Systems biology: Properties of reconstructed networks,” 2011.
[26] J. D. Orth, I. Thiele, and B. Ø. Palsson, “What is flux balance analysis?,” Nature
Biotechnology, vol. 28, pp. 245 EP –, Mar 2010.
[27] T. Pilizota and Y.-T. Yang, “Do it yourself microbial cultivation techniques for synthetic
and systems biology: Cheap, fun, and flexible,” Frontiers in Microbiology,
vol. 9, p. 1666, 2018.