研究生: |
李俊霖 Jun-Lin Li |
---|---|
論文名稱: |
使用Kane模型研究InGaAs/InP異質結構的電性 A Study of The Electronic Properties of InGaAs/InP Heterostructure by Using The Kane Model |
指導教授: |
林叔芽
Shu-Ya Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 異質結構 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文裡,我們使用以k•p理論為基礎的Kane模型來探討由晶格常數十分接近的In 0.53 Ga 0.47 As與InP所形成的異質接面的能帶結構。
我們計算了在不同量子井寬度以及不同位障高度下的基態能階値。我們發現,增加量子阱寬度,會造成基態能階的降低,進而可以推知量子井內的能階數目會增多﹔然而當增加位障高度時,卻會造成基態能階的升高。之後我們將一連串的量子阱連結起來造成所謂的 In 0.53 Ga 0.47 As / InP超晶格結構,原本分立的能階會分裂成形成子能帶。在此部分,我們計算了在不同超晶格週期以及不同位障磊晶層寬度下的能帶結構。我們可以觀察到,在不同的超晶格週期下的子能帶寬度,以及子能帶會在何時再度恢復到分立的能階狀態。最後在固定量子阱磊晶層寬度,去觀察在不同位障磊晶層寬度時的子能帶寬度變化。
其中在量子阱的部分,我們把計算出來的電子電洞躍遷值跟實驗上的數據做一比較,得到了相當不錯的ㄧ致性。
In this article, we use the Kane model, which is based on the k . p theory, to discuss the band structure of the lattice matched hetero-structure In 0.53 Ga 0.47 As / InP. We have calculated the energy levels of the InP / In 0.53 Ga 0.47 As / InP quantum wells, with different widths of the well and the heights of the barrier. We can find that the energy levels are lowered as the width of the well increases. The energy levels increase as the height of the barrier increases. Furthermore, the comparison of the inter-subband calculated in our work with selected data from the literature, the theoretical calculations agree well with experimental data. The discrete energy levels are broadened to form sub-bands in the In 0.53 Ga 0.47 As / InP super-lattice. Their widths decrease when the well-acting layer increases at a fixed barrier thickness, and when, at fixed the well-acting layer thickness LA, the barrier-acting layer thickness increase. The widths of sub-bands decrease as the carrier effective mass increases, to the part where the widths of the heavy hole sub-band in our sample are almost negligible for LA ≧ 30 Å.
[1] P. Vogl, J. Phys. Chem. Solids, Vol. 44, No. 5 , p. 365 (1983)
[2] M. D. Jaffe, and J. Singh, Solid State Communications, Vol. 62, No.6 , p. 399 (1987)
[3] M. F. H. Schuurmans, and G. W. t Hooft, Phys. Rev. B 31,8041 (1985)
[4] G. Bastard, Phys. Rev. B 24,5693 (1981)
[5] G. Bastard, Phys. Rev. B 25,7584 (1982)
[6] R.. Taylor, M. G. Burt and R. A. Abram, Superlattice and Microstructure, Vol. 3, No. 1 (1987)
[7] D. Mukherji and B. R. Nag, Phys. Rev. B 12, 4338 (1975)
[8] G. Bastard,〝Wave mechanics applied to semiconductor
heterostructures〞, p. 17 , (Halsted press, John Wiley & Sons, Inc.) (1988)
[9] G. Bastard,〝Wave mechanics applied to semiconductor
heterostructure〞, p. 44 , (Halsted press, John Wiley & Sons, Inc.) (1988)
[10] G. Bastard,〝Wave mechaics applied to semiconductor
heterostructure〞, p. 70–71, (Halsted press, John Wiley & Sons, Inc.) (1988)
[11] G. Bastard,〝Wave mechanics applied to semiconductor
heterostructure〞, p. 46 , (Halsted press, John Wiley & Sons, Inc.) (1988)
[12] D. J. Westland, A. M. Fox, Maciel, J. F. Ryan M. D. Scott, J. I. Davies, and J. R. Riffat, Appl. Phys. Lett. 50, 30 (1987)
[13] J. P. Laurent, J. Camassel, B. Reynes, D. Grutzmacher, K. Wolter, and H. Kurz, Semicond. Sci. Technol. 5, p. 222 (1990)
[14] R. Schwedler, H. Mikkelsen, K. Wolter, D. Laschet, J. Hergeth, and H. Kurz, J. Phys. III France 4, p. 2341 (1994)
[15] I. Vurgaftman, and J. R. Meyer, Journal of Applied Physics, Vol. 89, No. 11 , p. 5815 (2001)