簡易檢索 / 詳目顯示

研究生: 張良瑋
Chang, Liang-Wei
論文名稱: 以高藍光穿透率之UV光固化材料製作靜電可調式複合型微非球面透鏡
Micro Hybrid UV Curable Electro-shaped Aspheric Lens Fabricated by High Blue Ray Transmission Material
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 藍光光學讀取頭梯度靜電力
外文關鍵詞: Blu-Ray Pickup Head, Gradient Electrostatic Force
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般市售藍光DVD非球面透鏡之設計,主要利用高折射係數之玻璃材料設計為雙面非球面,通常第一面非球面曲率較大,因此透鏡的聚焦能力和NA值主要是由第一面所決定;而另一面非球面曲率較小,其主要功能是將光線在出瞳前之球差消除,使聚焦光點變小,並維持高的聚焦能量。然而欲製作高NA值之塑膠高階非球面透鏡,在相對於玻璃較低折射率限制下,需設計大曲率及高階非球面以達到藍光DVD所需物鏡規格。
    本論文使用對藍光(405nm)穿透率極佳之高分子材料(NOA63, refractive index:1.5802 at 405nm),搭配BK7光學玻璃基板(, refractive index:1.530239)作為複合式之透鏡設計,再輔以2維靜電力可調式電極製作複合式微型藍光非球面透鏡(clear aperture~1mm)。所使用之NOA63高分子材料,在厚度1mm下對於405nm藍光穿透率高達95%,所設計之BK7玻璃厚度約350µm。論文中以OSLO設計所需非球面形貌,並以CFD-ACE軟體模擬高分子材料NOA 63於不同靜電場下表面受力梯度關係,以作為修正製程及設計參數之依據。以點膠機精確控制透鏡之體積可達約1%誤差,亦可避免材料之浪費。非球面透鏡曲率之調變以不同電極之設計達到。目前所製作非球面透鏡之光點半高全寬値(FWHM)為0.504μm (for 405nm light) ,已接近市售商用藍光DVD透鏡FWHM= 0.4μm之規格。


    摘要 ......................................................i 誌謝 .....................................................ii 目錄 ....................................................iii 表目錄.....................................................v 圖目錄....................................................vi 第一章 緒論................................................1 1.1前言....................................................1 1.2光學讀取頭元件原理與系統架構............................3 1.3非球面鏡................................................8 1.4研究背景、動機與目的...................................10 第二章 文獻回顧...........................................13 2.1 微折射球面透鏡的製作方式..............................13 2.2 微折射非球面透鏡的製作方式............................19 2.3 微折射透鏡之調變方式..................................23 2.4 紫外光固化光學膠(NOA Series)製作折射式微透鏡........29 第三章 光學原理與設計.....................................32 3.1 近軸光學(Gaussian Optics).............................32 3.2 光線追蹤曲線(Ray-tracing curves) .....................35 3.3 像差理論(Wavefront error theory) .....................36 3.4 光學品質檢測(Optical evaluation) .....................39 3.5 微型非球面透鏡設計文獻................................42 3.6 微型非球面透鏡設計....................................44 3.7 OSLO光學模擬.........................................50 第四章 靜電力調變微型非球面透鏡系統.......................57 4.1 靜電力調變系統架構....................................57 4.2 CFDRC之梯度靜電力模擬................................59 4.3 靜電力調變系統電極製程................................62 4.4 透鏡材料之體積定量....................................65 4.5 微透鏡自我組裝成形技術................................69 第五章 實驗結果與光學分析.................................71 5.1 曲率擬合(Curve Fitting)...............................72 5.2 微透鏡非球面參數與形貌分析............................73 5.3 光學檢測原理與分析....................................84 第六章 結論與未來工作.....................................89 參考文獻..................................................90

    1.施騰凱,「折射式微光學元件之新製程研發」,國立中正大學機電光工程研究所碩士論文,民國92年7月。

    2.E. Bob, “Making MicroLens Backlights Grow Up”, Journal of the society for Information Display, 5&6/01, pp. 42-45, 2001.

    3.蕭博仁,「應用於藍光DVD讀取頭之靜電力可調式微複合型非球面透鏡之設計與研製」,國立清華大學工程與系統科學研究所碩士論文,民國97年7月。

    4.K. Manoh, H. Yoshida, T. Kobayashi, M. Takase,K. Yamauchii, S. Fuchiwha, T. Ohno, N. Nishi, M. Ozawa, M. Ikeda, T. Tojyo, T. Taniguchi, “Small Integrated Optical Head Device Using a Blue-Violet Laser Diode for Blu-ray Disc System”, The Japan Society of Applied Physics, Vol. 42, pp. 880-884, 2003.

    5.J. S. Sohn, E. H. Cho, M. Lee, H. S. Kim, M. Jung, S. D. Suh, W. C. Kim, N.C. Park, Y. P. Park, “Development of Microlens for High-Density Small-Form-Factor Optical Pickup”, The Japan Society of Applied Physics, Vol.45, No. 2B, pp. 1144-1151.

    6.Y. S. Kim,S. J. Lee,N. C. Park,Y. P. Park, “Design of wafer-based NA 0.85 micro objective lens and integrated pick up module for small sized optical drive”, Microsystem Technologies, P1048~1055, 2005.

    7.A. Nakaoki,T. Kondo,K. Saito,M. Sasaura,K. Fujiura, “High Numerical Aperture Hemisphere Solid Immersion Lens Made of KTaO3 with Wide Thickness Tolerance”, Proc. of SPIE Vol. 6282, 6282O1~O7, 2006.

    8.T. D. Milster, “Near-Field Optics: A New Tool for Data Storage”, PROCEEDINGS OF THE IEEE, VOL. 88,P1480~1490, 2000。

    9.“Reference Guide for Blue Laser Media” .

    10.M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov,“Simple reflow technique for fabrication of a microlens array in solgel glass ”, Optics Letters,Vol. 28, No. 9, 2003.

    11.M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov,“Simple reflow technique for fabrication of a microlens array in solgel glass”, Optics Letters,Vol. 28, No. 9, 2003.

    12.陳迥廷,「設計與製作應用於光學讀取頭之微非球面透鏡」, 國立清華大學微機電系統工程研究所碩士論文,民國95年7月。

    13.M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov,“Simple reflow technique for fabrication of a microlens array in solgel glass ”, Optics Letters,Vol. 28, No. 9, 2003.

    14.H. Yang,C. K. Chao,T. H. Lin,C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method”, Microsystem Technologies, P82~90, 2005.

    15.Tsung-Hung Lin,Hsiharng Yang,Ching-Kong Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing”, Microsystem Technologies, P1537~1543, 2007.

    16.Sung-Keun Lee1, Kwang-Cheol Lee and Seung S Lee, “A simple method for microlens fabrication by the modified LIGA process ”, Journal of Micromechanics and Microengineering, P334~340, 2002.

    17.M. Heckele,W. Bacher, K. D. Muller, “Hot embossing - The molding technique for plastic microstructures”, Microsystem Technologies 4, P122~124, 1998.

    18.H. Becker,U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures”, Sensors and Actuators 83, P130~135, 2000.

    19.C. Y. Chang A S. Y. Yang A J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates”, Microsystem Technologies12, P754~759, 2006.

    20.H. Jiang,X. Yuan,Z. Yun,Y. C. Chan,Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask”, Materials Science and Engineering C 16, P99~102, 2001.

    21.黃俊瑋,「以類LIGA技術與紫外光固化膠製作微透鏡陣列之新式製程設計探討」,國立中興大學精密工程研究所碩士論文,民國92年7月。

    22.Y. C. Lee,C. Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability”, Optics and Lasers in Engineering 45, P116~125, 2007.

    23.D. W. de Lima Monteiro,O. Akhzar-Mehr, P. M. Sarro and G. Vdovin, “Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si”, OPTICS EXPRESS,P2244~2252, Vol. 11, No. 18, 2003.

    24.N. Chronis,G. L. Liu,K. H. Jeong,L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network”, OPTICS EXPRESS,Vol. 11, No. 19,P2370~2378, 2003.

    25.Wen H. Hsieh,Jiann H. Chen, “Lens-Profile Control by Electrowetting Fabrication Technique”,IEEE PHOTONICS TECHNOLOGY LETTERS,Vol. 17, No. 3, 2005.

    26.C. C. Cheng,C. A. Chang,C. H. Liu,J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment”,Institute of Physics Publishing,Journal of Optic A, S365~369, 2006.

    27.C. C. Cheng,J. A. Yeh, “Dielectrically actuated liquid lens”, OPTICS EXPRESS,Vol. 15, No. 12, P7140~7150, 2007.

    28.S. Kuiper,B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras”, APPLIED PHYSICS LETTERS,Vol.85, P1128~91130, 2004.

    29.C. C. Cheng,C. A. Chang,J. A. Yeh, “Variable focus dielectric liquid droplet lens”, OPTICS EXPRESS,Vol. 14, No. 9, P4101~4106, 2006.

    30.Hongwen Ren, Haiqing Xianyu, Su Xu, and Shin-Tson Wu, “Adaptive dielectric liquid lens”, OPTICS EXPRESS,Vol. 16, No. 19, 2008.

    31.Su Xu, Yeong-Jyh Lin, and Shin-Tson Wu, “Dielectric liquid microlens with well-shaped electrode”, OPTICS EXPRESS,Vol. 17, No. 13, 2009.

    32.Eun-Hyun Park,Moon-Jung Kim,Young-Se Kwon, “Microlens for Efficient Coupling Between LED and Optical Fiber”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 11, No.4, 1999.

    33.Kuang-Sheng Hong,JingWang, Alexey Sharonov, Dinesh Chandra,Joanna Aizenberg,Shu Yang, “Tunable microfluidic optical devices with an integrated microlens array”, Institute of Physics Publishing,J. Micromech. Microeng., 2006.

    34.Jerwei Hsieh,Sheng-Yi Hsiao,Chun-Feng Lai,Weileun Fang, “Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench”, IOP Publishing,J. Micromech. Microeng., 2007.

    35.Sheng-Yi Hsiao,Chih-Chun Lee1,Weileun Fang, “The implementation of concave micro optical devices using a polymer dispensing technique”, IOP Publishing,J. Micromech. Microeng., 2008.

    36.K. S. Jung, “Design of optical path of pickup for small form factor optical disk drive”,Microsystem Technologies, P1041~1047, 2005.

    37.B. H. W. Hendriks, “Miniaturisation of High-NA Objectives for Optical Recording”,OPTICAL REVIEW,Vol.10, No.4, P241~245, 2003.

    38.J. S. Sohn,E. H. Cho,M. Lee,H. S. Kim,M. Jung,S. D. Suh,W. C. Kim,N.C. Park,Y. P. Park,“Development of Microlens for High-Density Small-Form-Factor Optical Pickup”, The Japan Society of Applied Physics, Vol.45, No.2B, P1144~1151.

    39.B. H. W. Hendriks,“Miniaturised High-Numerical Aperture Plastic Objective for Optical Recording”,Japanese Journal of Applied Physics, Vol.44, No.9A, P6564~6567, 2005 .

    40.B. H. W. Hendriks, “Miniaturisation of High-NA Objectives for Optical Recording”,OPTICAL REVIEW,Vol.10,No.4,P241~245, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE