研究生: |
馬赫什 Chamarthi Maheswar Raju |
---|---|
論文名稱: |
針對研究複雜樣品之氣相層析法與質譜法之快速進樣及分離技術開發 Development of Rapid Sample Introduction and Separation Techniques for Gas Chromatography and Mass Spectrometry to Study Complex Samples |
指導教授: |
鄂本帕偉
Urban, Pawel L. |
口試委員: |
黃郁棻
Huang, Yu-Fen 平松弘嗣 Hirotsugu, Hiramatsu 杉山輝樹 Teruki, Sugiyama 曾建銘 Tseng, Chien-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 聯用技術 、離子遷移譜學 、低成本儀器 、質譜學 、揮發性有機化合物 、萃取 、泡沫 |
外文關鍵詞: | Hyphenated technique, Ion-mobility spectroscopy, Low-cost instrument, Mass spectrometry, Volatile organic compound, Extraction, Foams |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質譜法(MS)是一種成熟的強大分析技術。其概念是誕生於湯姆森的陰極射線管實驗。當電離氖離子傳送到電場和磁場中時,湯姆森觀察到兩束偏折光束並利用照相底片記錄它們。從這個實驗證明了世界上存在 20 Ne和 22 Ne氖同位素。後來,湯姆森的同事阿斯頓(Aston)研究了他的理論,並在1919年研發了功能齊全的質譜儀。幾十年後,Paul在20世紀60年代發明了四極柱,而它是許多質譜儀的核心。Finnigan Corporation (Thermo Fisher Scientific)將MS電腦化,增強了其功能。在將這些儀器商業化的過程中,Finnigan估計此質譜儀可在全球銷售10台儀器。然而多年後,MS已成為從蛋白質體學到環境分析等不同領域廣泛使用的儀器。質譜法與氣相層析、液相層析和離子遷移譜法等分離技術的聯用增強了其在複雜樣品分析中的能力和普及度。在第一章中,我簡要地介紹了我的研究計畫。在第2章描述的第一個研究計劃中,我提出了催化氧化介導萃取(COME),它利用過氧化氫酶與過氧化氫反應釋放的氧氣從液體樣品中萃取揮發性有機化合物(VOC)。此外,我們利用低成本開源電子模組實現了提取裝置的自動化,並將此裝置與氣相層析質譜法、三重四極柱質譜法(QQQ-MS)和漂移管式離子遷移譜法系統結合起來,以證明其相容性。我們亦將COME與頂空進樣、固相微萃取和單滴微萃取進行了比較,並發現此方法具有定量液體基質中VOC的潛力。在第3章裡描述的第二個研計劃中,我展示了以印刷電路板製成的經濟型DT-IMS與商用三重四極柱質譜儀(QQQ-MS)的整合。所提出的大氣壓印刷電路板漂移管式離子遷移三重四極柱質譜儀有辦法提供有關離子源內簇形成的分子資訊。除此之外,該裝置也可以觀察涉及向分析物中添加摻雜劑的反應。該系統使用化學標準進行表徵,隨後用於分析尼古丁貼片貼在豬皮上所散發的尼古丁蒸氣以及源自變質肉類的揮發性有機化合物。
Mass spectrometry (MS) is a well established powerful analytical technique. The concept of MS was born with Thomson's cathode ray tube experiment. While transferring ionized neon ions into an electric and magnetic field, Thomson and Aston observed two deflected beams and recorded them using the photographic plate. This experiment proved the presence of neon isotopes of 20Ne and 22Ne in the world. Later on, Thomson’s coworker, Aston, worked on his theories and developed a fully functional mass spectrometer in 1919. Several decades later, in the 1960s, Paul invented quadrupole, which is the heart of many mass spectrometers. Its capabilities were enhanced by Finnigan Corporation (Thermo Fisher Scientific), which computerized MS. While commercializing the instruments, Finnigan estimated that 10 instruments could be sold worldwide. Years later, MS is a widely used instrument in different fields from proteomics to environmental analysis. Hyphenating the separation techniques such as gas chromatography, liquid chromatography, and ion mobility spectrometry with MS enhanced its capabilities and popularity in complex sample analysis.
In Chapter 1, I give a brief introduction to my research projects. In the first project, described in Chapter 2, I presented catalytic oxygenation mediated extraction (COME), which uses oxygen liberated in the reaction of catalase and hydrogen peroxide to extract volatile organic compounds (VOCs) from liquid samples. Additionally, we automated the extraction setup using low-cost open-source electronic modules. We coupled this setup with gas chromatography-mass spectrometry, triple quadrupole-mass spectrometry (QQQ-MS), and drift tube ion-mobility spectrometry systems to prove its compatibility. We also compared COME with headspace sampling, solid-phase microextraction, and single-droplet microextraction. This method has the potential of quantifying VOCs in liquid matrices. In the second project, described in Chapter 3, I presented the integration of an economical ion mobility spectrometer based on a printed circuit boards with QQQ-MS system. The presented atmospheric pressure chemical ionization printed circuit board ion mobility triple quadrupole MS system provides molecular information about the cluster formation within the ion source. Observation of reactions involving the addition of dopants to analytes is possible. The system was characterized using chemical standards and has been subsequently employed in analyses of nicotine vapor emanating from porcine skin incubated with nicotine patches and VOCs originating from spoiled meat.
(1) The European Parliament and the Council of European Union, OJ, 2004, L143, 87–96.
(2) World Health Organisation. Indoor air quality: organic pollutants: report on WHO meeting, Berlin, West, 23–27 August 1987. (EURO Reports and Studies, 1989).
(3) Sghaier, L.; Vial, J.; Sassiat, P.; Thiebaut, D.; Watiez, M.; Breton, S.; Rutledge, D. N.; Cordella, C. B. Y. An Overview of Recent Developments in Volatile Compounds Analysis from Edible Oils: Technique‐oriented Perspectives: Review of Volatile Compounds Analysis from Edible Oils. Eur. J. Lipid Sci. Technol. 2016, 118, 1853–1879.
(4) Sethi, S.; Nanda, R.; Chakraborty, T. Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases. Clin. Microbiol. Rev. 2013, 26, 462–475.
(5) Mondal, P.; Misra, D.; Chowdhury, S. D. Exhaled Volatile Organic Compounds (VOCs): A Potential Biomarkers for Chronic Disease Diagnosis. Sci. J. Biol. 2021, 5, 5–27.
(6) Puton, J.; Namiesnik, J. Ion Mobility Spectrometry: Current Status and Application for Chemical Warfare Agents Detection. TrAC, Trends Anal. Chem. 2016, 85, 10–20.
(7) Kenneth G.; Furton, K. G.; Caraballo, N. I.; Cerreta, M. M.; Holness, H. K. Advances in the use of Odor as Forensic Evidence Through Optimizing and Standardizing Instruments and Canines. Phil. Trans. R. Soc. B. 2015, 370, 1471–2970.
(8) Elsevier publications: Green Analytical Chemistry. https://www.journals.elsevier.com/green-analytical-chemistry (accessed on 04-12-2022).
(9) Anastas. P.T. Green Chemistry and the Role of Analytical Methodology Development. Crit. Rev. Anal. Chem. 1999, 29, 167–175.
(10) Sajid, M.; Płotka-Wasylka, J. Green Aanalytical Chemistry Metrics: A Review. Talanta 2022, 238, 123046.
(11) de la Guardia, M.; Garrigues, S. Present and Future of Green Analytical Chemistry. In Challenges in Green Analytical Chemistry, 2nd ed.; Royal Society of Chemistry, 2020; pp 1–18.
(12) Lawrence, H. K.; Liz U. G.; Jennifer, L. Y. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708.
(13) Likens, S. T.; Nickerson, G. B. Detection of Certain Hop Oil Constituents in Brewing Products. Proc. Am. Soc. Brew. Chem. 1964, 22, 5−13.
(14) Weerawatanakorn, M.; Wu, J.-C.; Pan, M.-H.; Ho, C.-T. Reactivity and Stability of Selected Flavor Compounds. J. Food Drug Anal. 2015, 23, 176–190.
(15) Ross, C.; Pawliszyn, J. Extraction | Solid-Phase Microextraction. In Encyclopedia of Analytical Science 2nd ed.; Elsevier, 2005; pp 608-616.
(16) Shirey, R. E. SPME Commerical Devices and Fibre Coatings: Handbook of Solid Phase Microextraction, 1st ed.; Elsevier Inc, 2012; pp 99–133.
(17) Chang, C.-H.; Urban, P. L. Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase. Anal. Chem. 2016, 88, 8735–8740.
(18) Elpa, D. P.; Wu, S.-P.; Urban, P. L. Rapid Extraction and Analysis of Volatile Solutes with an Effervescent Tablet. Anal. Chem. 2020, 92, 2756–2763.
(19) Thomson, J. J. XL. Cathode Rays. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1897, 44, 293–316.
(20) Maher, S.; Jjunju, F. P. M.; Taylor, S. Colloquium: 100 Years of Mass Spectrometry: Perspectives and Future Trends. Rev. Mod. Phys. 2015, 87, 113–135.
(21) Paul, W.; Steinwedel, H. "Notizen: Ein Neues Massenspektrometer Ohne Magnetfeld" Zeitschrift für Naturforschung A 1953, 8, 448–450.
(22) Cao, G.; Li, k.; Guo, J. Lu, M.; Hong, Y.; Cai, Z. Mass Spectrometry for Analysis of Changes During Food Storage and Processing. J. Agric. Food Chem. 2020, 68, 6956–6966.
(23) Wang, P.; Wilson, S. R. Mass Spectrometry-Based Protein Identification by Integrating de novo Sequencing with Database Searching. BMC Bioinform. 2013, 14, S24.
(24) Ayala-Cabrera, J. F.; Santos, F. J.; Moyano, E. Recent Advances in Analytical Methodologies Based on Mass Spectrometry for Environmental Analysis of Halogenated Organic Contaminants. Trends Environ. Anal. Chem. 2021, 30, e00122.
(25) Pramanik, B. N.; Bartner, P. L.; Chen, G. The Role of Mass Spectrometry in the Drug Discovery Process. Curr. Opin. Drug Discov. Devel. 1999, 2, 401–417.
(26) Elpa, D. P.; Prabhu, G. R. D.; Wu, S.; Tay, K. S.; Urban, P. L. Automation of Mass Spectrometric Detection of Analytes and Related Workflows: A Review. Talanta 2020, 208, 120304.
(27) Naxing Xu, R.; Fan, L.; Rieser, M. J. Recent Advances in High-throughput Quantitative Bioanalysis by LC-MS/MS. J. Pharm. Biomed. 2007, 44, 342–355.
(28) Kaye, B.; Herron, W. J.; Macrae, P. V.; Robinson, S.; Stopher, D. A.; Venn, R. F.; Wild, W. Rapid, Solid Phase Extraction for the High-Throughput Assay of Darifenacin in Human Plasma. Anal. Chem. 1996, 68, 1658–1660.
(29) Steinborner, S.; Henion, J. Liquid-Liquid Extraction in the 96-well plate Format with SRM LC/MS Quantitative Determination of Methotrexate and its Major Metabolite in Human Plasma. Anal. Chem. 1999, 71, 2340–2345.
(30) Jemal, M.; Teitz, D.; Ouyang, Z.; Khan, S. Comparison of Plasma Sample Purification by Manual Liquid-Liquid Extraction and Automated 96-well Solid-Phase Extraction for Analysis by High-Performance Liquid Chromatography with Tandem Mass Spectrometry. J. Chromatogr. B Biomed. Appl. 1999, 732, 501–508.
(31) Tweed, J. A.; Walton, J.; Gu, Z. Automated Supported Liquid Extraction Using 2D Barcode Processing for Routine Toxicokinetic Portfolio Support. Bioanalysis 2012, 4, 1311–1326.
(32) Fu, Q.; Kowalski, M. P.; Mastali, M.; Parker, S. J.; Sobhani, K.; Van den Broek, I.; Hunter, C. L.; Van Eyk, J. E. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry. J. Proteome Res. 2018, 17, 420–428.
(33) Chen, Y.; Guenther, J. M.; Gin, J. W.; Chan, L. J. G.; Costello, Z.; Ogorzalek, T. L.; Tran, H. M.; Blake-Hedges, J. M.; Keasling, J. D.; Adams, P. D.; Garcia Martin, H.; Hillson, N. J.; Petzold, C. J. Proteome Res. 2019, 18, 3752–3761.
(34) Mahara, B. M.; Borossay, J.; Torkos, K. Liquid-Liquid Extraction for Sample Preparation Prior to Gas Chromatography and Gas Chromatography-Mass Spectrometry Determination of Herbicide and Pesticide Compounds. Microchem. J. 1998, 58, 31–38.
(35) Majors, R. E.; Anastassiades, M.; Lehotay, S. J. The QuEChERS Revolution. LC GC Eur. 2010, 8, 418–429.
(36) Chong, C. M.; Hubschmann, H. J. Fully Automated QuEChERS Extraction and Cleanup of Organophosphate Pesticides in Orange Juice. LC GC Eur. 2021, 39, 12–16.
(37) Chao, Y.-T.; Prabhu, G. R. D.; Yu, K.-C.; Syu, J.-Y.; Urban, P. L. BioChemPen for a Rapid Analysis of Compounds Supported on Solid Surfaces. ACS Sens. 2021, 6, 3744–3752.
(38) Peng, F.; Sheng, L.; Liu, B.; Tong, H.; Liu, S. Comparison of Different Extraction methods: Steam Distillation, Simultaneous Distillation and Extraction and Headspace Co-distillation, used for the Analysis of the Volatile Components in Aged Flue-Cured Tobacco Leaves. J. Chromatogr. A 2003, 1040, 1–17.
(39) Zhang, Z.; Pawliszyn, J. Headspace Solid-Phase Microextraction. Anal. Chem. 1993, 65, 1843–1852.
(40) Liu, S.; Dasgupta, P. K. Liquid Droplet. A Renewable Gas Sampling Interface. Anal. Chem. 1995, 67, 2042–2049.
(41) Chang, C. H.; Urban, P. L. Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase. Anal. Chem. 2016, 88, 8735–8740.
(42) Abu Bakar, N. H.; Yu, K.; Urban, P. L. Robotized Noncontact Open-Space Mapping of Volatile Organic Compounds Emanating from Solid Specimens. Anal. Chem. 2021, 93, 6889–6894.
(43) Chang, C.-H.; Urban, P. L. Automated Dual-Chamber Sampling System to Follow Dynamics of Volatile Organic Compounds Emitted by Biological Specimens. Anal. Chem. 2018, 90, 13848–13854.
(44) Raju, C. M.; Yu. K.; Shih, C.; Elpa, D. P.; Prabhu, G. R. D.; Urban, P. L. Catalytic Oxygenation-Mediated Extraction as a Facile and Green Way to Analyze Volatile Solutes. Anal. Chem. 2021, 93, 8923–8930.
(45) Computer Vision. https://devopedia.org/computer-vision (accessed on 11-12-2022).
(46) How the Eyes Work. https://www.nei.nih.gov/learn-about-eye-health/healthy-vision/how-eyes-work (accessed on 11-12-2022).
(47) Capitan-Vallvey, L. F.; Nuria Lopez-Ruiz, N.; Martínez-Olmos, A.; Erenas, M. M.; Palma, A. J. Recent Developments in Computer Vision-based Analytical Chemistry: A Tutorial Review. Anal. Chim. Acta. 2015, 899, 23–56.
(48) Kramm, D. E.; Kolb, C. L. Sciff Reagent. Anal. Chem. 1955, 27, 1076–1079.
(49) Barbosa, J. Indicators | Acid-Base. In Encyclopedia of Analytical Science, 2nd ed.; Elsevier, 2005; pp 360–371.
(50) Asyahira, R.; Hakiki, R. The Utilization OpenCV to Measure the Ammonia and Color Concentration in Water. Journal of Environmental Engineering and Waste Management 2021, 6, 90–110.
(51) Shellie, R. A. Gas Chromatography. In Encyclopedia of Forensic Sciences, 2nd ed.; Academic Press, 2013; pp 579–585.
(52) Bartolozzi, F.; Bertazza, G.; Bassi, D.; Cristoferi, G. Simultaneous Determination of Soluble Sugars and Organic Acids as Their Trimethylsilyl Derivatives in Apricot Fruits by Gas-liquid Chromatography. J. Chromatogr. A 1998, 758, 99–107.
(53) Jwaili, M. Pharmaceutical Applications of Gas Chromatography. Open J. Appl. Sci. 2019, 9, 2165–3925.
(54) Kabir, A.; Furton, K. G. Applications of Gas Chromatography in Forensic Science. In Gas Chromatography, 2nd ed.; Elsevier, 2021; pp 745–791.
(55) Capitan, P.; Malmezat, T.; Breuille, D.; Obled, C. Gas Chromatographic-Mass Spectrometric Analysis of Stable Isotopes of Cysteine and Glutathione in Biological Samples. J. Chromatogr. B Biomed. Appl. 1999, 732, 127–135.
(56) Jennings, W.; Mittlefehldt, E.; Stremple, P. Introduction. In Analytical Gas Chromatography, 2nd ed.; 1997; pp 1–29.
(57) James, A. T.; Martin, J. P. Gas-liquid Partition Chromatography: the Separation and Micro-estimation of Volatile Fatty Acids from Formic Acid to Dodecanoic Acid. Biochem. J. 1952, 50, 679–690.
(58) Gas Chromatography. https://chem.libretexts.org/ (accessed on 13-04-2022).
(59) Using Hydrogen as a Carrier Gas for GC. https://www.peakscientific.com/ (accessed on 13-04-2022).
(60) Using Hydrogen as a Carrier Gas for Gas Chromatography. https://www.azom.com/ (accessed on 14-04-2022).
(61) Gingras, A. C.; Gstaiger, M.; Raught, B.; Aebersold, R. Analysis of Protein Complexes using Mass Spectrometry. Nat. Rev. Mol. Cell. Biol. 2007, 8, 645–654.
(62) Brown, H. M.; McDaniel, T. J.; Fedick, P. W.; Mulligan, C. C. The Current Role of Mass Spectrometry in Forensics and Future Prospects. Anal. Methods 2020, 12, 3974–3997.
(63) Kaufmann, A. The Current Role of High-Resolution Mass Spectrometry in Food Analysis. Anal. Bioanal. Chem. 2012, 403, 1233–1249.
(64) Hu, M.; Ben, Y.; Wong, M. H.; Zheng, C. Trace Analysis of Multiclass Antibiotics in Food Products by Liquid Chromatography-Tandem Mass Spectrometry: Method Development. J. Agric. Food Chem. 2021, 69, 1656–1666.
(65) Botitsi, H. V.; Garbis, S. D.; Economou, A.; Tsipi, D. F. Current Mass Spectrometry Strategies for the Analysis of Pesticides and their Metabolites in Food and Water Matrices. Mass Spectrom Rev. 2011, 30, 907–39.
(66) Dempster, A. J. A New Method of Positive Ray Analysis. Phys. Rev. 1918, 11, 316–326.
(67) Bleakney, W. A New Method of Positive Ray Analysis and its Application to the Measurement of Ionisation Potentials in Mercury Vapour. Phys. Rev. 1929, 34, 157–157.
(68) Yang, H.; Urban, P. L. On-line Coupling of Fizzy Extraction with Gas Chromatography. Anal. Bioanal. Chem. 2019, 411, 2511–2520.
(69) Gómez-Ramos, M. M.; Ucles, S.; Ferrer, C.; Fernández-Alba, A. R.; Hernando, M. D. Exploration of Environmental Contaminants in Honeybees using GC-TOF-MS and GC-Orbitrap-MS. Sci. Total Environ. 2019, 647, 232–244.
(70) Lee, P. H.; Tang, H. P. Multi-Pesticide Analysis in Sediment by GC-EI-MS/MS Using Programmed Temperature Vaporization–Large Volume Injection Technique. Chromatographia 2015, 78, 695–705.
(71) Choudhury, F. K.; Pandey, P.; Meitei R.; Cardona, D.; Gujar, A.C., Shulaev, V. GC-MS/MS Profiling of Plant Metabolites. In Plant Metabolic Engineering, 1st ed.; Methods in Molecular Biology, Vol 2396. Humana Press, 2021; pp 101–115. DOI:10.1007/978-1-0716-1822-6_9.
(72) Yamashita, M.; Fenn, J. B. Electrospray Ion Source. Another Variation on the Free-jet Theme. J. Phys. Chem. 1984, 88, 4451–4459.
(73) Blades, A. T.; Ikonomou, M. G.; Kebarle, P. Mechanism of Electrospray Mass Spectrometry. Electrospray as an Electrolysis Cell. Anal. Chem. 1991, 63, 2109–2114.
(74) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization-Principles and Practice. Mass Spectrom. Rev. 1990, 9, 37–70.
(75) Wilm, M. S.; Mann, M. Electrospray and Taylor-Cone Theory, Dole’s Beam of Macromolecules at Last? Int. J. Mass Spectrom. Ion Process. 1994, 136, 167–180.
(76) Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.
(77) Juraschek, R.; Dülcks, T.; Karas, M. Nanoelectropsray More than Just a Minimized-Flow Electropsray Ionization source. J. Am. Soc. Mass Spectrom. 1999, 10, 300–308.
(78) Karas, M.; Bahr, U.; Dülcks, T. Nano-electrospray Ionization Mass Spectrometry: Addressing Analytical Problems Beyond Routine. Fresenius J. Anal. Chem. 2000, 366, 669–676.
(79) Konermann, L.; Ahadi, E.; Rodiguez, A. D.; Vahidi, S. Unravelling the Mechanism of Electrospray Ionization. Anal. Chem. 2013, 85, 2–9.
(80) Wilam, M. Principles of Electrospray Ionization. Mol. Cell Proteomics 2011, 10, M111.009407.
(81) Metwally, H.; Duez, Q.; Konermann, L. Chain Ejection Model for Electrospray Ionisation of Unfolded Proteins: Evidence from Atomistic Simulations and Ion Mobility Spectrometry. Anal. Chem. 2018, 90, 10069–10077.
(82) Desfontaine, V.; J.-L.Veuthey, J. L.; Guillarme, D. Hyphenated Detectors: Mass Spectrometry. In Supercritical Fluid Chromatography, 1st ed.; Elsevier, 2017; pp 213–244.
(83) Tahboub, Y. R. Chromatographic Behavior of Co-eluted Plasma Compounds and Effect on Screening of Drugs by APCI-LC–MS(/MS): Applications to Selected Cardiovascular Drugs. J. Pharm. Anal. 2014, 4, 384–391.
(84) Niu, Y.; Liu, J.; Yang, R.; Zhang, J.; Shao, B. Atmospheric Pressure Chemical Ionization Source as an Advantageous Technique for Gas Chromatography-tandem Mass Spectrometry. TrAC, Trends Anal. Chem. 2020, 132, 116053.
(85) Byrdwell, C. W. APCI-MS in Lipid Analysis. In Advances in Lipid Methodology, 1st ed.; Woodhead Publishing, 2012; pp 171–253.
(86) Chevolleau, S.; Bouville, A.; Debrauwer, L. Development and Validation of a Modified QuEChERS Protocol Coupled to UHPLC-APCI-MS/MS for the Simple and Rapid Quantification of 16 Heterocyclic Aromatic Amines in Cooked Beef. Food Chem. 2020, 316, 126327.
(87) Niessen, W. M. A. Atmospheric Pressure Ionization in Mass Spectrometry. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Elsevier, 2017; pp 31–36.
(88) Byrdwell, C. W. Atmospheric Pressure Chemical Ionization Mass Spectrometry for Analysis of Lipids. Lipids 2001, 36, 327–346.
(89) El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of Basics: Electrospray MALDI, and Commonly used Mass Analyzers. Appl . Spectrosc. Rev. 2009, 44, 210–230.
(90) Dawson, P. H. Quadrupole Mass Spectrometry and its Applications, Elsevier, New York, 2013.
(91) de Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed.; Willey: Chichester, 2007.
(92) Urban, P. L.; Chen, Y. C.; Wang, Y. S. Mass Analyzers for Time-Resolved Mass Spectrometry. In Time-Resolved Mass Spectrometry, 1st ed.; John Wiley & Sons, 2016; pp 53–154.
(93) Shimadzu-LCMS-8030 Instruction Manual; Shimadzu: Kyoto, 2013.
(94) Crevelin, E. J.; Possato, B.; Lopes, J. L. C.; Lopes N. P.; Crotti, A. E. M. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions. Anal. Chem. 2017, 89, 3929–3936.
(95) Glish, G. L.; Goeringer, D. E. Tandem Quadrupole/Time-of-flight Instrument for Mass Spectrometry/Mass Spectrometry. Anal. Chem. 1984, 56, 2291–2295.
(96) Shimadzu-LCMS-9030 Instruction Manual; Shimadzu: Kyoto, 2020.
(97) Urban, P. L.; Chen, Y. C.; Wang, Y. S. Mass Analyzers for Time-Resolved Mass Spectrometry. In Time-Resolved Mass Spectrometry, 1st ed.; John Wiley & Sons, 2016; pp 53–154.
(98) Dodds, J. N.; Baker, E. S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195.
(99) Mäkinen, M. A.; Osmo A. Anttalainen, O. A.; Mika, E. T. Sillanpää, M. E. T. Ion Mobility Spectrometry and Its Applications in Detection of Chemical Warfare Agents. Anal. Chem. 2010, 82, 9594–9600.
(100) Verkouteren, J. R.; Staymates, J. L. Reliability of Ion Mobility Spectrometry for Qualitative Analysis of Complex, Multicomponent Illicit Drug Samples. Forensic Sci. Int. 2011, 206, 190–196.
(101) Márquez-Sillero, I.; Aguilera-Herrador, E.; Cárdenas, S.; Valcárcel, M. Ion-Mobility Spectrometry for Environmental Analysis. TrAC, Trends Anal. Chem. 2011, 30, 677–690.
(102) Vautz, W.; Zimmermann, D.; Hartmann, M.; Baumbach, J. I.; Nolte, J.; Jung, J. Ion Mobility Spectrometry for Food Quality and Safety. Food Addit. Contam. 2006, 23, 1064–1073.
(103) Erler, A.; Riebe, D.; Beitz, T.; Löhmannsröben, H. G.; Grothusheitkamp, D.; Kunz, T.; Methner, F.J. Characterization of Volatile Metabolites Formed by Molds on Barley by Mass and Ion Mobility Spectrometry. J. Mass Spectrom. 2020, 55, e4501.
(104) Zhang, L.; Daniel P.; Foreman, D. P.; Grant, P. A.; Shrestha, B.; Moody, S. A.; Villiers, F.; June M. Kwak, J. M.; Vertes, A. In Situ Metabolic Analysis of Single Plant Cells by Capillary Microsampling and Electrospray Ionization Mass Spectrometry with Ion Mobility Separation. Analyst 2014, 139, 5079–5085.
(105) Handa, H.; Usuba, A.; Maddula, S.; Baumbach, J. I.; Mineshita, M.; Miyazawa, T. Exhaled Breath Analysis for Lung Cancer Detection Using Ion Mobility Spectrometry. PLoS One 2014, 9, e114555.
(106) Francis, W. K. Plasma Chromatography. Anal. Chem. 1974, 46, 710A–720A.
(107) Reid Asbury, G.; Klasmeier, J.; Hill jr, H. H. Analysis of Explosives Using Electrospray Ionization/Ion Mobility Spectrometry (ESI/IMS). Talanta 2000, 50, 1291–1298.
(108) Chen, C.; Jiang, D.; Li, H. UV Photoionization Ion Mobility Spectrometry: Fundamentals and Applications. Anal. Chim. Acta 2019, 1077, 1–13.
(109) Hollerbach, A.; Fedick, P.; Cooks, R. G. Ion Mobility−Mass Spectrometry Using a Dual-Gated 3D Printed Ion Mobility Spectrometer. Anal. Chem. 2018, 90, 13265–13272.
(110) Revercomb, H. E.; Mason, E. A. Theory of Theory of Plasma Chromatography/Gaseous Electrophoresis. Review. Anal. Chem. 1975, 47, 970–983.
(111) Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; John Willey & Sons, New York, 1998.
(112) Hollerbach, A.; Baird, Z.; Cooks, R. G. Ion Separation in Air Using a Three-Dimensional Printed Ion Mobility Spectrometry. Anal. Chem. 2017, 89, 5058–5065.
(113) Reinecke, T.; Clowers, B. H. Implementation of a Flexible, Open-Source Platform for Ion Mobility spectrometry. HardwareX 2018, 4, e00030.
(114) Chantipmanee, N.; Hauser, P. C. Development of Simple Drift Tube Design for Ion Mobility Spectrometry Based on Flexible Printed Circuit Board Material. Anal. Chim. Acta 2021, 1170, 338626.
(115) McDaniel, E. W.; Martin, D. W.; Barnes, W. S. Drift Tube-Mass Spectrometer for Studies of Low-energy Ion-molecules Reactions. Rev. Sci. Instrum. 1962, 33, 2–7.
(116) Ross, D. H.; Xu, L. Determination of Drugs and Drug Metabolites by Ion Mobility-mass Spectrometry: A Review. Anal. Chim. Acta 2021, 1154, 338270.
(117) Lu, K.; Li, X.; Chen, H.; Liu, Z. Constraints on Isomers of Dissolved Organic Matter in Aquatic Environments: Insight from Ion Mobility Mass Spectrometry. Geochim. Cosmochim. Acta 2011, 30, 677–690.
(118) Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations: Cytochrome c in the gas phase. J. Am. Chem. Soc. 1995, 117, 10141–10142.
(119) McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion Mobility-Mass spectrometry: a New Paradigm for Proteomics. Int. J. Mass Spectrom. 2005, 240, 301–315.
(120) Fenn L.S., McLean J.A. Structural Separations by Ion Mobility-MS for Glycomics and Glycoproteomics. In Mass Spectrometry of Glycoproteins. Methods in Molecular Biology (Methods and Protocols), vol 951; Humana Press, 2013; pp 177-194. DOI: 10.1007/978-1-62703-146-2_12
(121) Mu, Y.; Schulz, B. L.; Ferro, V. Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology. Molecules 2018, 23, 2557.
(122) Li A., Hines K.M., Xu L. Lipidomics by HILIC-Ion Mobility-Mass Spectrometry. In Ion Mobility-Mass Spectrometry. Methods in Molecular Biology, Vol. 2084; Humana Press, 2020; pp 119–132. DOI: 10.1007/978-1-0716-0030-6_7
(123) Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Ion Mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nat. Protoc. 2008, 3, 1139–1152.
(124) McDaniel, E. W.; Martin, D. W.; Barnes, W. S. Drift Tube-mass Spectrometer for Studies of Low-energy Ion-molecules Reactions. Rev. Sci. Instrum. 1962, 33, 2–7.
(125) Giles, K.; Pringle, S.D.; Worthington, K.R.; Little, D.; Wildgoose, J.L.; Bateman, R.H. Applications of a Travelling Wave-based Radio-frequency-only Stacked Ring Ion Guide. Rapid Commun. Mass Spectrom. 2004, 18, 2401–2414.
(126) Hale, O. J.; IllesoToth, E.; Mize, T. H.; Cooper, H. J. High-Field Asymmetric Waveform Ion mobility Spectrometry and Native Mass Spectrometry: Analysis of Intact Proteins Assemblies and Proteins Complexes. Anal. Chem. 2020, 92, 6811–6816.
(127) Fernandez-Lima, F.A.; Kaplan, D. A.; Park, M. A. Note: Integration of Trapped Ion Mobility Spectrometry with Mass Spectrometry. Rev. Sci. Instrum. 2011, 82, 126106.
(128) Webb, L. K.; Gatimella, S. V. B.; Tolmachev, A. V.; Chen, T. C.; Zhang, X.; Norheim, R. V.; Prost, S. A.; LaMarche, B.; Anderson, G. A.; Ibrahim, Y. M.; Smith, R. D. Experimental Evaluation and Optimization of Structure for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time of Flight Mass Spectrometry. Anal. Chem. 2014, 86, 9169–9176.
(129) Giles, K.; Ujma, J.; Wildgoose, J.; Pringle, S.; Richardson, K.; Langridge, Green, M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91, 8564–8573.
(130) Stiving, A.Q.; Jones, B.J.; Ujma, J.; Giles, K.; Wyscoki, V. H. Collision Cross Sections of Charge-Reduced Proteins and Protein Complexes: A Database for Collision Cross Section Calibration. Anal. Chem. 2020, 92, 4475–4483.
(131) Armenta, S.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. TrAC, Trends Anal. Chem. 2008, 27, 497–511.
(132) Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green Analytical Chemistry-Theory and Practice. Chem. Soc. Rev. 2010, 39, 2869–2878.
(133) Jochmann, M. A.; Laaks, J.; Schmidt, T. C. Solvent-Free Extraction and Injection Techniques. In Practical Gas Chromatography; Dettmer-Wilde, K., Engewald, W., Eds.; Springer, 2014; pp 371–412.
(134) Harries, M. E.; Bruno, T. J. Headspace Analysis|Purge and Trap. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Elsevier: Amsterdam, 2019; pp 379–384.
(135) Liger-Belair, G.; Cilindre, C.; Gougeon, R. D.; Lucio, M.; Gebefügi, I.; Jeandet, P.; Schmitt-Kopplin, P. Unraveling Different Chemical Fingerprints Between a Champagne Wine and its Aerosols. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16545–16549.
(136) Yang, H.-C.; Chang, C.-H.; Urban, P. L. Fizzy Extraction of Volatile Organic Compounds Combined with Atmospheric Pressure Chemical Ionization Quadrupole Mass Spectrometry. J. Vis. Exp. 2017, e56008.
(137) Yang, H.-C.; Urban, P. L. On-Line Coupling of Fizzy Extraction with Gas Chromatography. Anal. Bioanal. Chem. 2019, 411, 2511–2520.
(138) Yang, H.-C.; Chang, C.-M.; Urban, P. L. Automation of Fizzy Extraction Enabled by Inexpensive Open-Source Modules. Heliyon 2019, 5, e01639.
(139) Chang, C.-M.; Yang, H.-C.; Urban, P. L. On the Mechanism of Automated Fizzy Extraction. PeerJ Anal. Chem. 2019, 1, e2.
(140) Prabhu, G. R. D.; Yang, T.-H.; Hsu, C.-Y.; Shih, C.-P.; Chang, C.-M.; Liao, P.-H.; Ni, H.-T.; Urban, P. L. Facilitating Chemical and Biochemical Experiments with Electronic Microcontrollers and Single-Board Computers. Nat. Protoc. 2020, 15, 925–990.
(141) Chingin, K.; Cai, Y.; Liang, J.; Chen, H. Simultaneous Preconcentration and Desalting of Organic Solutes in Aqueous Solutions by Bubble Bursting. Anal. Chem. 2016, 88, 5033–5036.
(142) Urban, P. L. Universal Electronics for Miniature and Automated Chemical Assays. Analyst 2015, 140, 963–975.
(143) Urban, P. L. Prototyping Instruments for the Chemical Laboratory Using Inexpensive Electronic Modules. Angew. Chem., Int. Ed. 2018, 57, 11074–11077.
(144) Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120, 9482–9553.
(145) Davis, J. J.; Foster, S. W.; Grinias, J. P. Low-Cost and Open-Source Strategies for Chemical Separations. J. Chromatogr. A 2021, 1638, 461820.
(146) Fitzpatrick, D. E.; O’Brien, M.; Ley, S. V. A Tutored Discourse on Microcontrollers, Single Board Computers and Their Applications to Monitor and Control Chemical Reactions. React. Chem. Eng. 2020, 5, 201–220.
(147) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Nikbin, N. The Internet of Chemical Things. Beilstein Mag. 2015, 1, 2.
(148) Prabhu, G. R. D.; Witek, H. A.; Urban, P. L. Telechemistry: Monitoring Chemical Reactions via the Cloud Using the Particle Photon Wi-Fi Module. React. Chem. Eng. 2019, 4, 1616–1622.
(149) OpenCV. https://opencv.org/ (accessed 07-12-2022).
(150) Howse, J. OpenCV Computer Vision with Python; Packt Publishing: Birmingham, 2013.
(151) Ley, S. V.; Ingham, R. J.; O’Brien, M.; Browne, D. L. Camera-Enabled Techniques for Organic Synthesis. Beilstein J. Org. Chem. 2013, 9, 1051–1072.
(152) O’Brien, M.; Cooper, D. A.; Mhembere, P. The Continuous-Flow Synthesis of Carbazate Hydrazones Using a Simplified Computer-Vision Controlled Liquid-Liquid Extraction System. Tetrahedron Lett. 2016, 57, 5188–5191.
(153) Harris, C. R., et al. Array Programming with NumPy. Nature 2020, 585, 357–362.
(154) OpenCV: Changing Colorspaces/Object Tracking. https://docs.opencv.org/master/df/d9d/tutorial_py_colorspaces.html (accessed 26-05-2021).
(155) Swanger, L. A.; Rhines, W. C. On the Necessary Conditions for Homogeneous Nucleation of Gas Bubbles in Liquids. J. Cryst. Growth 1972, 12, 323–326.
(156) Miller, D. N. Scale-up of Agitated Vessels Gas-Liquid Mass Transfer. AIChE J. 1974, 20, 445–453.
(157) Guo, K.; Wang, J.; Pan, M. H.; Wang, J. Experimental and Numerical Investigations of Bubble Formation in a Flow-Focusing Device with Temperature Difference between Gas and Liquid Phases. Int. J. Heat Mass Transf. 2022, 187, 122550.
(158) European Medicines Agency. Q2 (R1) Validation of Analytical Procedures: Text and Methodology; CPMP/ICH/381/95; European Medicines Agency: London, 1995.
(159) European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed; SANTE/12682/2019; European Commission: Brussels, 2020.
(160) Karabagias, I. K. Volatile Compounds of Freshly Prepared Lemon Juice from the Region of Kalamata. SM Anal. Bioanal. Techn. 2017, 2, 1013.
(161) Hausch, B. J.; Lorjaroenphon, Y.; Cadwallader, K. R. Flavor Chemistry of Lemon-Lime Carbonated Beverages. J. Agric. Food Chem. 2015, 63, 112–119.
(162) Qiao, Y.; Xie, B.; Zhang, Y.; Zhang, Y.; Fan, G.; Yao, X.; Pan, S. Characterization of Aroma Active Compounds in Fruit Juice and Peel Oil of Jinchen Sweet Orange Fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O. Molecules 2008, 13, 1333–1344.
(163) Strojnik, L.; Stopar, M.; Zlatič, E.; Kokalj, D.; Gril, M. N.; Ženko, B.; Žnidaršič, M.; Bohanec, M.; Boshkovska, B. M.; Luštrek, M.; Gradišek, A.; Potočnik, D.; Ogrinc, N. Authentication of Key Aroma Compounds in Apple Using Stable Isotope Approach. Food Chem. 2019, 277, 766–773.
(164) Schirmer, A.; Rude, M. A.; Li, X.; Popova, E.; del Cardayre, S. B. Microbial Biosynthesis of Alkanes. Science 2010, 329, 559–562.
(165) Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J. I. Ion Mobility Spectrometry for the Detection of Volatile Organic Compounds in Exhaled Breath of Patients with Lung Cancer: Results of a Pilot Study. Thorax 2009, 64, 744–748.
(166) Jünger, M.; Vautz, W.; Kuhns, M.; Hofmann, L.; Ulbricht, S.; Baumbach, J. I.; Quintel, M.; Perl, T. Ion Mobility Spectrometry for Microbial Volatile Organic Compounds: A New Identification Tool for Human Pathogenic Bacteria. Appl. Microbiol. Biotechnol. 2012, 93, 2603–2614.
(167) Shih, C.-P.; Yu, K.-C.; Ou, H.-T.; Urban, P. L. Portable Pen-Probe Analyzer Based on Ion Mobility Spectrometry for in Situ Analysis of Volatile Organic Compounds Emanating from Surfaces and Wireless Transmission of the Acquired Spectra. Anal. Chem. 2021, 93, 2424–2432.
(168) Wiśniewska, P.; Śliwińska, M.; Dymerski, T.; Wardencki, W.; Namieśnik, J. Comparison of an Electronic Nose Based on Ultrafast Gas Chromatography, Comprehensive Two-Dimensional Gas Chromatography, and Sensory Evaluation for an Analysis of Type of Whisky. J. Chem. 2017, 2017, 2710104.
(169) Langejuergen, J.; Allers, M.; Oermann, J.; Kirk, A.; Zimmermann, S. High Kinetic Energy Ion Mobility Spectrometer: Quantitative Analysis of Gas Mixtures with Ion Mobility Spectrometry. Anal. Chem. 2014, 86, 7023–7032.
(170) Chen, C.; Chen, H.; Li, H. Pushing the Resolving Power of Tyndall–Powell Gate Ion Mobility Spectrometry over 100 with No Sensitivity Loss for Multiple Ion Species. Anal. Chem. 2017, 89, 13398–13404.
(171) Raddatz, C.-R.; Allers, M.; Kirk, A. T.; Zimmermann, S. Acetone and Perdeuterated Acetone in UV-IMS. Int. J. Ion Mobility Spectrom. 2018, 21, 49–53.
(172) Eiceman, G. A.; Nazarov, E. G.; Rodriguez, J. E.; Bergloff, J. F. Positive Reactant Ion Chemistry for Analytical, High Temperature Ion Mobility Spectrometry (IMS): Effects of Electric Field of the Drift Tube and Moisture, Temperature, and Flow of the Drift Gas. Int. J. Ion Mobility Spectrom. 1998, 1, 28–37.
(173) Harries, M. E.; Bruno, T. J. Headspace Analysis | Static. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Elsevier: Amsterdam, 2019; pp 385–390.
(174) Urbanowicz, M.; Zabiegała, B.; Namieśnik, J. Solventless Sample Preparation Techniques Based on Solid and Vapour-Phase Extraction. Anal. Bioanal. Chem. 2011, 399, 277–300.
(175) Piri-Moghadam, H.; Ahmadi, F.; Pawliszyn, J. A Critical Review of Solid Phase Microextraction for Analysis of Water Samples. TrAC, Trends Anal. Chem. 2016, 85, 133–143.
(176) de Coning, P.; Swinley, J. Sampling and Sample Introduction. In A Practical Guide to Gas Analysis by Gas Chromatography, 1st ed.; Elsevier: Amsterdam, 2019; pp 165–204.
(177) Kostiainen, R. Effect of Operating Parameters in Purge-and-Trap GC-MS of Polar and Nonpolar Organic Compounds. Chromatographia 1994, 38, 709–714.
(178) Bar-Even, A.; Noor, E.; Savir, Y.; Liebermeister, W.; Davidi, D.; Tawfik, D. S.; Milo, R. The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters. Biochemistry 2011, 50, 4402–4410.
(179) Baureder, M.; Hederstedt, L. Heme Proteins in Lactic Acid Bacteria. In Advances in Microbial Physiology, 1st ed.; Poole, R. K., Ed.; Academic Press: Cambridge; 2013; pp 1−43.
(180) Zwank, L.; Berg, M.; Schmidt, T. C.; Haderlein, S. B. Compound-Specific Carbon Isotope Analysis of Volatile Organic Compounds in the Low-Microgram per Liter Range. Anal. Chem. 2003, 75, 5575–5583.
(181) Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B. Compound-Specific Stable Carbon Isotope Analysis of Chlorofluorocarbons in Groundwater. Anal. Chem. 2015, 87, 10498–10504.
(182) Andrews, S. J.; Hackenberg, S. C.; Carpenter, L. J. Technical Note: A Fully Automated Purge and Trap GC-MS System for Quantification of Volatile Organic Compound (VOC) Fluxes Between the Ocean and Atmosphere. Ocean Sci. 2015, 11, 313–321.
(183) Steiner, S.; Wolf, J.; Glatzel, S.; Andreou, A.; Granda, J. M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P. J.; Angelone, D.; Cronin, L. Organic Synthesis in a Modular Robotic System Driven by a Chemical Programming Language. Science 2019, 363, 6423.
(184) Thomson, J. J.; Conduction of Electricity Through Gases. Cambridge University Press, Cambridge, 1903.
(185) Todd, G. W. Further Experiment on the Mobility of the Positive Ion at Low Pressures. Philos. Mag. 1913, 6, 163–171.
(186) Chanin, L. M.; Biondi, M. A. Temperature Dependence of Ion Mobilities in Helium Neon, and Argon. Phys. Rev. 1957, 106, 473–479.
(187) Karasek, F. W. Plasma Chromatography. Anal. Chem. 1974, 46, 710A–720A.
(188) Armenta, S.; Alcala, M.; Blanco, M. A Review of Recent, Unconventional Applications of Ion Mobility Spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123.
(189) Armenta, S.; Esteve-Turrillas, F. A.; Alcalà, M. Analysis of Hazardous Chemicals by “Stand Alone” Drift Tube Ion Mobility Spectrometry: A Review. Anal. Methods 2020, 12, 1163–1181.
(190) Dubland, J. A. Lipid Analysis by Ion Mobility Spectrometry Combined with Mass Spectrometry: a Brief Update with a Perspective on Applications in the Clinical Laboratory. J. Mass Spectrom. Adv. Clin. Lab. 2022, 23, 7–13.
(191) Ewing, R. G.; Atkinson, D. A.; Eiceman, G. A.; Ewing, G. J. A Critical Review of Ion Mobility Spectrometry for the Detection of Explosives and Explosive Related Compounds. Talanta 2001, 54, 515–529.
(192) Te Brinke, E.; Arrizabalaga-Larrañaga, A.; Blokland, M. H. Insights of Ion Mobility Spectrometry and Its Application on Food Safety and Authenticity: A Review. Anal. Chim. Acta 2022, 1222, 340039.
(193) Kellar, T.; Keller, A.; Tutschi-Bauer, E. Monticelli, F. Applications of Ion Mobility Spectrometry in Cases of Forensic Interest Forensic Sci. Forensic Sci. Int. 2006, 161, 130–140.
(194) Verkouteren, J. R.; Staymates, J. L. Reliability of Ion Mobility Spectrometry for Qualitative Analysis of Complex, Multicomponent Illicit Drugs Samples Forensic Sci. Forensic Sci. Int. 2011, 206, 190–196.
(195) O’Donnell, R. M.; Sun, X.; Harrington, P. de B. Pharmaceutical Applications of Ion Mobility Spectrometry. TrAC, Trends Anal. Chem. 2008, 27, 44–53.
(196) McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion Mobility–Mass Spectrometry: A New Paradigm for Proteomics. Int. J. Mass Spectrom. 2005, 240, 301–315.
(197) Cohen, M. J.; Karasek, F. W. Plasma Chromatography ––A New Dimension for Gas Chromatography and Mass Spectrometry. J. Chromatogr. Sci. 1970, 8, 330–337.
(198) Kirk, A. T.; Zimmermann, S. An Analytical Model for the Optimum Drift Voltage of Drift Tube Ion Mobility Spectrometers with Respect to Resolving Power and Detection Limits. Int. J. Ion Mobil. Spectrom. 2015, 18, 129–135.
(199) Purves, R. W.; Guevremont, R. Electrospray Ionization High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 1999, 71, 2346–2357.
(200) Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. An Investigation of the Mobility Separation of Some Peptide and Protein Ions Using a New Hybrid Quadrupole/Travelling Wave IMS/Oa-ToF Instrument. Int. J. Mass Spectrom. 2007, 261, 1–12.
(201) Fernandez-Lima, F.; Kaplan, D. A.; Suetering, J.; Park, M. A. Gas-Phase Separation Using a Trapped Ion Mobility Spectrometer. Int. J. Ion Mobil. Spectrom. 2011, 14, 93–98.
(202) Michelmann, K.; Silveira, J. A.; Ridgeway, M. E.; Park, M. A. Fundamentals of Trapped Ion Mobility Spectrometry. J. Am. Soc. Mass Spectrom. 2015, 26, 14–24.
(203) Tolmachev, A. V.; Webb, I. K.; Ibrahim, Y. M.; Garimella, S. V. B.; Zhang, X.; Anderson, G. A.; Smith, R. D. Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations. Anal. Chem. 2014, 86, 9162–9168.
(204) Giles, K.; Ujma, J.; Wildgoose, J.; Pringle, S.; Richardson, K.; Langridge, D.; Green, M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91, 8564–8573.
(205) Revercomb, H. E.; Mason, E. A. Theory of Plasma Chromatography/Gaseous Electrophoresis. Review. Anal. Chem. 1975, 47, 970–983.
(206) Eiceman, G. A.; Karpas, Z.; Hill, H. H. Ion Mobility Spectrometry, 3rd ed.; CRC Press: Boca Raton, FL, 2013.
(207) Gabelica, V.; Shvartsburg, A. A.; Afonso, C.; Barran, P.; Benesch, J. L. P.; Bleiholder, C.; Bowers, M. T.; Bilbao, A.; Bush, M. F.; Campbell, J. L.; Campuzano, I. D. G.; Causon, T.; Clowers, B. H.; Creaser, C. S.; De Pauw, E.; Far, J.; Fernandez-Lima, F.; Fjeldsted, J. C.; Giles, K.; Groessl, M.; Hogan, C. J., Jr; Hann, S.; Kim, H. I.; Kurulugama, R. T.; May, J. C.; McLean, J. A.; Pagel, K.; Richardson, K.; Ridgeway, M. E.; Rosu, F.; Sobott, F.; Thalassinos, K.; Valentine, S. J.; Wyttenbach, T. Recommendations for Reporting Ion Mobility Mass Spectrometry Measurements. Mass Spectrom. Rev. 2019, 38, 291–320.
(208) Dodds, J. N.; Baker, E. S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195.
(209) Mcdaniel, E. W.; Martin, D. W. Barnes Drift Tube Mass Spectrometer for Studies of Low Energy Ion Molecule Reactions. Rev. Sci. Instrum. 1962, 33, 2–7.
(210) Borsdorf, H.; Mayer, T.; Zarejousheghani, M.; Eiceman, G. A. Recent Developments in Ion Mobility Spectrometry. Appl. Spectrosc. Rev. 2011, 46, 472–521.
(211) Ibrahim, Y. M.; Baker, E. S.; Danielson, W. F., 3rd; Norheim, R. V.; Prior, D. C.; Anderson, G. A.; Belov, M. E.; Smith, R. D. Development of a New Ion Mobility (Quadrupole) Time-of-Flight Mass Spectrometer. Int. J. Mass Spectrom. 2015, 377, 655–662.
(212) Bohnhorst, A.; Kirk, A. T.; Zimmermann, S. Simulation Aided Design of a Low Cost Ion Mobility Spectrometer Based on Printed Circuit Boards. Int. J. Ion Mobil. Spectrom. 2016, 19, 167–174.
(213) Reinecke, T.; Clowers, B. H. Implementation of a Flexible, Open-Source Platform for Ion Mobility Spectrometry. HardwareX 2018, 4, e00030.
(214) Bohnhorst, A.; Kirk, A. T.; Zimmermann, S. Toward Compact High-Performance Ion Mobility Spectrometers: Ion Gating in Ion Mobility Spectrometry. Anal. Chem. 2021, 93, 6062–6070.
(215) Ou, H.-T.; Buchowiecki, K.; Urban, P. L. Remote Monitoring of Volatiles by Ion Mobility Spectrometry with Wireless Data Transmission and Centralized Data Analysis. Digit. Discov. 2022, 1, 806–815.
(216) Reinecke, T.; Kenyon, S.; Gendreau, K.; Clowers, B. H. Characterization of a Modulated X-Ray Source for Ion Mobility Spectrometry. Anal. Chem. 2022, 94, 12008–12015.
(217) Chantipmanee, N.; Hauser, P. C. Determination of Tobramycin in Eye Drops with an Open-Source Hardware Ion Mobility Spectrometer. Anal. Bioanal. Chem. 2022, 414, 4059–4066.
(218) Chantipmanee, N.; Furter, J. S.; Hauser, P. C. Ambient Ionization Source Based on a Dielectric Barrier Discharge for Direct Testing of Pharmaceuticals Using Ion Mobility Spectrometry. Anal. Chim. Acta 2022, 1195, 339432.
(219) Chantipmanee, N.; Hauser, P. C. Development of Simple Drift Tube Design for Ion Mobility Spectrometry Based on Flexible Printed Circuit Board Material. Anal. Chim. Acta 2021, 1170, 338626.
(220) Kwasnik, M.; Fernández, F. M. Theoretical and Experimental Study of the Achievable Separation Power in Resistive-Glass Atmospheric Pressure Ion Mobility Spectrometry: Separation Power in Resistive-Glass Atmospheric Pressure IMS. Rapid Commun. Mass Spectrom. 2010, 24, 1911–1918.
(221) Hollerbach, A.; Fedick, P. W.; Cooks, R. G. Ion Mobility-Mass Spectrometry Using a Dual-Gated 3D Printed Ion Mobility Spectrometer. Anal. Chem. 2018, 90, 13265–13272.
(222) Drees, C.; Höving, S.; Vautz, W.; Franzke, J.; Brandt, S. 3D-Printing of a Complete Modular Ion Mobility Spectrometer. Mater. Today 2021, 44, 58–68.
(223) Hauck, B. C.; Ruprecht, B. R.; Riley, P. C. Accurate and On-Demand Chemical Sensors: A Print-in-Place Ion Mobility Spectrometer. Sens. Actuators B Chem. 2022, 362, 131791.
(224) Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A. Atmospheric Pressure Chemical Ionization Studies of Non-Polar Isomeric Hydrocarbons Using Ion Mobility Spectrometry and Mass Spectrometry with Different Ionization Techniques. J. Am. Soc. Mass Spectrom. 2002, 13, 1078–1087.
(225) Cumeras, R.; Figueras, E.; Davis, C. E.; Baumbach, J. I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation. Analyst 2015, 140, 1376–1390.
(226) Urban, P. L.; Y.-C.; Wang, Y.-S. Chapter 6: Hyphenated Mass Spectrometric Techniques. In Time-Resolved Mass Spectrometry: From Concept to Applications; Wiley: Chichester; 2016, pp. 169–193.
(227) Wu, C.; Siems, W. F.; Klasmeier, J.; Hill, H. H., Jr. Separation of Isomeric Peptides Using Electrospray Ionization/High-Resolution Ion Mobility Spectrometry. Anal. Chem. 2000, 72, 391–395.
(228) Hopper, J. T. S.; Oldham, N. J. Collision Induced Unfolding of Protein Ions in the Gas Phase Studied by Ion Mobility-Mass Spectrometry: The Effect of Ligand Binding on Conformational Stability. J. Am. Soc. Mass Spectrom. 2009, 20, 1851–1858.
(229) Sysoev, A.; Adamov, A.; Viidanoja, J.; Ketola, R. A.; Kostiainen, R.; Kotiaho, T. Development of an Ion Mobility Spectrometer for Use in an Atmospheric Pressure Ionization Ion Mobility Spectrometer/Mass Spectrometer Instrument for Fast Screening Analysis. Rapid Commun. Mass Spectrom. 2004, 18, 3131–3139.
(230) Allers, M.; Timoumi, L.; Kirk, A. T.; Schlottmann, F.; Zimmermann, S. Coupling of a High-Resolution Ambient Pressure Drift Tube Ion Mobility Spectrometer to a Commercial Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2018, 29, 2208–2217.
(231) Kozole, J.; Stairs, J. R.; Cho, I.; Harper, J. D.; Lukow, S. R.; Lareau, R. T.; DeBono, R.; Kuja, F. Interfacing an Ion Mobility Spectrometry Based Explosive Trace Detector to a Triple Quadrupole Mass Spectrometer. Anal. Chem. 2011, 83, 8596–8603.
(232) Clowers, B. H.; Hill, H. H., Jr. Mass Analysis of Mobility-Selected Ion Populations Using Dual Gate, Ion Mobility, Quadrupole Ion Trap Mass Spectrometry. Anal. Chem. 2005, 77, 5877–5885.
(233) Heptner, A.; Reinecke, T.; Langejuergen, J.; Zimmermann, S. A Gated Atmospheric Pressure Drift Tube Ion Mobility Spectrometer-Time-of-Flight Mass Spectrometer. J. Chromatogr. A 2014, 1356, 241–248.
(234) Liu, W.; Davis, A. L.; Siems, W. F.; Yin, D.; Clowers, B. H.; Hill, H. H., Jr. Ambient Pressure Inverse Ion Mobility Spectrometry Coupled to Mass Spectrometry. Anal. Chem. 2017, 89, 2800–2806.
(235) Garcia, L.; Saba, C.; Manocchio, G.; Anderson, G. A.; Davis, E.; Clowers, B. H. An Open Source Ion Gate Pulser for Ion Mobility Spectrometry. Int. J. Ion Mobil. Spectrom. 2017, 20, 87–93.
(236) Izadi, Z.; Tabrizchi, M.; Borsdorf, H.; Farrokhpour, H. Humidity Effect on the Drift Times of the Reactant Ions in Ion Mobility Spectrometry. Anal. Chem. 2019, 91, 15932–15940.
(237) Kirk, A. T.; Kobelt, T.; Spehlbrink, H.; Zimmermann, S. A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources. J. Am. Soc. Mass Spectrom. 2018, 29, 1425–1430.
(238) Takaya, K. Shibata Applications of Ion-Mobility Spectrometry to Chemical Analysis at High Concentrations. Atmosphere 2022, 13. 1380.
(239) Skoog, D. A.; Holler, F. J.; Crouch. S. R. Chapter 1: Introduction. In Principles of Instrumental Analysis; Cengage Learning: Massachusetts; 2016, pp 1–21.
(240) European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. European Commission, Brussels, 2020, SANTE/12682/2019.
(241) Dwivedi, P.; Schultz, A. J.; Hill, H. H. Metabolic Profiling of Human Blood by High-Resolution Ion Mobility Mass Spectrometry (IM-MS). Int. J. Mass Spectrom. 2010, 298, 78–90.
(242) Davis, E. J.; Grows, K. F.; Siems, W. F.; Hill, H. H., Jr. Improved Ion Mobility Resolving Power with Increased Buffer Gas Pressure. Anal. Chem. 2012, 84, 4858–4865.
(243) Kirk, A. T.; Grube, D.; Kobelt, T.; Wendt, C.; Zimmermann, S. High-Resolution High Kinetic Energy Ion Mobility Spectrometer Based on a Low-Discrimination Tristate Ion Shutter. Anal. Chem. 2018, 90, 5603–5611.
(244) Kwantwi-Barima, P.; Reinecke, T.; Clowers, B. H. Increased Ion Throughput Using Tristate Ion-Gate Multiplexing. Analyst 2019, 144, 6660–6670.
(245) Chen, X.; Latif, M.; Gandhi, V. D.; Chen, X.; Hua, L.; Fukushima, N.; Larriba-Andaluz, C. Enhancing Separation and Constriction of Ion Mobility Distributions in Drift Tubes at Atmospheric Pressure Using Varying Fields. Anal. Chem. 2022, 94, 5690–5698.
(246) Kirk, A. T.; Bakes, K.; Zimmermann, S. A Universal Relationship between Optimum Drift Voltage and Resolving Power. Int. J. Ion Mobil. Spectrom. 2017, 20, 105–109.
(247) Dutkiewicz, E. P.; Chiu, H.-Y.; Urban, P. L. Micropatch-Arrayed Pads for Non-Invasive Spatial and Temporal Profiling of Topical Drugs on Skin Surface: Skin Analysis. J. Mass Spectrom. 2015, 50, 1321–1325.
(248) Bantawa, K.; Rai, K.; Subba Limbu, D.; Khanal, H. Food-Borne Bacterial Pathogens in Marketed Raw Meat of Dharan, Eastern Nepal. BMC Res. Notes 2018, 11, 618.
(249) Pedrosa-Menabrito, A. Regenstein Shelf-Life Extension of Fresh Fish-a Review Part III-Fish Quality and Methods Assessment. J. Food Qual 1990, 13, 209–223.
(250) Bota, G. M.; Harrington, P. B. Direct Detection of Trimethylamine in Meat Food Products Using Ion Mobility Spectrometry. Talanta 2006, 68, 629–635.
(251) Puton, J.; Nousiainen, M.; Sillanpää, M. Ion Mobility Spectrometers with Doped Gases. Talanta 2008, 76, 978–987.
(252) Cheng, S.; Li, H.; Jiang, D.; Chen, C.; Zhang, T.; Li, Y.; Wang, H.; Zhou, Q.; Li, H.; Tan, M. Sensitive Detection of Trimethylamine Based on Dopant-Assisted Positive Photoionization Ion Mobility Spectrometry. Talanta 2017, 162, 398–402.
(253) Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120, 9482–9553.
(254) Lubman, D. M.; Kronick, M. N. Plasma Chromatography with Laser-Produced Ions. Anal. Chem. 1982, 54, 1546–1551.
(255) Reinecke, T.; Kirk, A. T.; Heptner, A.; Niebuhr, D.; Böttger, S.; Zimmermann, S. A Compact High-Resolution X-Ray Ion Mobility Spectrometer. Rev. Sci. Instrum. 2016, 87, 053120.
(256) Kuklya, A.; Reinecke, T.; Uteschil, F.; Kerpen, K.; Zimmermann, S.; Telgheder, U. X-Ray Ionization Differential Ion Mobility Spectrometry. Talanta 2017, 162, 159–166.
(257) Jafari, M. T. Low-Temperature Plasma Ionization Ion Mobility Spectrometry. Anal. Chem. 2011, 83, 797–803.
(258) Davis, E. J.; Clowers, B. H. Low-Cost Arduino Controlled Dual-Polarity High Voltage Power Supply. HardwareX 2023, 13, e00382.