簡易檢索 / 詳目顯示

研究生: 王書凡
Shu-Fan Wang
論文名稱: 結合統計與幾何資訊有效率地從單張影像重建3維人臉模型的演算法
An Efficient Algorithm for 3D Face Reconstruction from a Single 2D Image Combining Statistical and Geometrical Information
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 51
中文關鍵詞: 三維人臉重建特徵點輪廓統計幾合校準
外文關鍵詞: 3D Face, Reconstruction, Feature, Contour, Statistical, Geometrical, align
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    在這篇論文中,我們提出了一個系統,利用統計出來的特徵資料以及影像上的人臉特徵重建三維模型。此系統包含了兩個部分,事前的統計過程以及重建三維人臉的應用階段。在第一階段,我們提出了一個新的三維人臉校準的方法,是將三維人臉資料做柱狀座標的轉換遞迴地找出精確的校準關係,並在實驗中也證明此方法的確能夠降低1/7左右的誤差。利用這校準好的資料加上Radial Basis Function的技術取得合理的資料對應,並應用PCA得到在三維空間中人的臉部特徵變化。在實驗中也證實此統計方式能夠有效利用數個具代表性的人臉特徵線性組合出各種不同的三維人臉模型。

    我們將事先統計好的人臉特徵資料應用於單張人臉影像的重建。在此提出的方法是利用Levenberg-Marquardt 的最佳化演算法,找到最佳人臉特徵的線性組合能夠將三維人臉與二維影像上的臉部特徵及輪廓表現上的差異降到最低。我們將三維上的人臉特徵及輪廓資訊以Weak-perspective的模式投影到二維空間中,並在此空間中來估測彼此間的誤差值。在人臉特徵間的誤差是以Euclidean distance來衡量,而在輪廓表現上的誤差,我們以partially one-way Haussdorf distance 來估測,同時考量這兩種誤差值,並取得一個最佳的權衡點以重建逼真的三維人臉模型。

    在實驗結果中,我們將所有誤差量化以觀查其準確性,除了估測在二維空間中的誤差外,在模擬的資料中也直接的比較三度空間中的誤差,從數據中可以看出其誤差比例是很小的,如此可以顯示其準確性。我們也將從正面影像重建出的三維人臉中,比較其真正的側面以及重建的人臉側面,由此得知此三維重建演算法是合理也是相當可行的方法。


    Abstract
    In this thesis, we propose a new technique for reconstructing 3D head model from a single 2D image based on using a 3D eigenhead model. This system is composed of two components, offline training of the eigenhead model and online reconstruction of a 3D head model. For the first part, we propose a new 3D head alignment algorithm based on establishing dense point correspondences between 3D head model in the cylindrical coordinate to align the 3D head models in the training data set. With the proving of the experimental results, we reduce about 1/7 of the average error. We apply the Radial Basis Function technique to establish dense correspondences between each 3D face model and a reference face model, followed by the principal component analysis technique to compute the statistical eigenhead model.

    For the 3D face reconstruction from a single image, the proposed algorithm finds the best linear combination of the eigenhead bases that minimizes an energy function composed of distances between the corresponding facial feature points and a one-way partial Haussdorf distance between the facial contours in the image domain. This energy minimization is accomplished by the iterative Levenberg-Marquardt algorithm with the initial guess determined by solving a linear system derived from the image projection constraints for the corresponding facial feature points. Experimental results are given to demonstrate the performance of the proposed algorithm

    Table of contents Figure list III Table list III Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Problem description 2 1.3 Previous works 2 1.4 System Overview 7 1.4.1 PDM construction 8 1.4.2 3D Face Reconstruction from a Single 2D image 8 1.5 Main contribution 9 1.6 Thesis organization 10 Chapter 2 PDM Construction 11 2.1 3D Face Database 11 2.2 Iterative Alignment 14 2.3 Correspondence based on Radial Basis Functions 18 2.4 Principal component analysis 20 Chapter 3 3D Model Reconstruction from a Single 2D Image 22 3.1 Feature information in 2D image 22 3.2 Initial 3D face model 25 3.3 Detail refinement of 3D face model 26 3.3.1 3D contour detection 27 3.3.2 The combination of contour knowledge 28 Chapter 4 Experimental Results 31 4.1 PDM construction 31 4.1.1 Improvement of iterative alignment 31 4.1.2 Statistical analysis of feature vectors 33 4.1.3 Fitting to a new 3D face 36 4.2 3D face reconstructions from a single 2D image 39 4.2.1 Simulation experiments 40 Chapter 5 Conclusion 46 5.1 Summary 46 5.2 Future work 47 References 49

    References
    [1] M. Turk and A.Pentland, “Eigenfaces for recognition”, Journal of Cognitive Neuroscience, Vol. 3, PP. 72-86, 1991.
    [2] T.Cootes, C. Taylor, D. Cooper and J. Graham, “Active Shape Model – their training and application”. Computer Vision and Image Understading, 61 (1):38-59, January 1995.
    [3] Timothy F. Cootes, Gareth J. Edwards, Christopher J. Taylor: Active Appearance Models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6): 681-685 (2001)
    [4] V. Blanz and T. Vetter, “A Morphable Model for the Synthesis of 3D faces,” Computer Graphics Proc. SIGGRAPH ’99 pp. 187-194, 1999
    [5] V. Blanz and T. Vetter. “Face Recognition Based on Fitting a 3D Morphable Model” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 25, No. 9, 2003.
    [6] T.F. Cootes, D.H. Cooper, C.J. Taylor, J. Graham, A trainable method of parametric shape description, Image and Vision Computing 10 (5) (1992) 289-294.
    [7] A. Hill, Alan D. Brett, Christopher J. Taylor: Automatic Landmark Identification Using a New Method of Non-rigid Correspondence. IPMI 1997: 483-488
    [8] Alan D. Brett, Christopher J. Taylor: A method of automated landmark generation for automated 3D PDM construction. Image Vision Comput. 18(9): 739-748 (2000)
    [9] A. Hill, Christopher J. Taylor: A method of non-rigid correspondence for automatic landmark identification. In 7th British Machine Vision Conference, pages 323–332. BMVA Press, September 1996.
    [10] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” int. J. Comput. Vis., vol. 1, no. 4 pp. 321-331, 1988.
    [11] J. Montagnat and H. Delingette, “Globally constrained deformable models for 3D object reconstruction, “ Signal Process., vol 71, no.2, pp. 173-186, 1998.
    [12] M. Kaus, V.Pekar, C.Lorenz, R. Truyen, S. Lobregt, J. Richolt, and J. Weese, “Automated 3D PDM Construction using Deformable models,” in International Conference on Computer Vision, 2001, pp. 566-572.
    [13] Moghaddam, B.; Lee, J.H.; Pfister, H.; Machiraju, R., “Model-based 3D face Capture with Shape-from-Silhouettes”, IEEE International Workshop on Analysis and Modeling of Face and Gestures (AMFG), pp. 20-27, October 2003.
    [14] S.-H. Lai and Y.-L. Chen, "Learning a statistical 3D geometric head model," SPIE Conf. on Video metrics, Santa Clara, California, Jan. 2003.
    [15] S. K. Nayar, Y. Nakagawa, “Shape from focus”, IEEE Trans. on PAMI, vol.16, no.8, pp. 824-831, 1994.
    [16] B. J. Super, A. C. Bovik, “Shape from texture using local spectral moments”, IEEE Trans on PAMI, vol. 17, no. 4, pp.333-343, 1995.
    [17] J.J. Atick, P.A. Griffin, and A.N. Redlich, “Statistical Approach to Shape from Shading: Reconstruction of 3D Face Surfaces from Single 2D Images,” Computation in Neurological Systems, vol. 7, no. 1, 1996.
    [18] R.A. Johnson and D. W. Wichern, “Applied Multivariate Statistical Analysis”, pretice Hall, Upper Saddle River, New Jersey, 1998.
    [19] T.Sim, S. Baker, and M. Bsat, “The CMU Pose, Illumination, and Expression (PIE) Database,”Proc. Int’l Conf. Automatic Face and Gesture Recognition. Pp. 53-58. 2002
    [20] J. C. Carr, R.K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, and B. C. McCallum, "Reconstruction and Representation of 3D Objects with Radial Basis Functions," In Proceedings of ACM SIGGRAPH, pp. 67-76, Aug. 2001.
    [21] Berthold K. P. Horn, “Close-form solution of absolute orientation using unit quaternions”, JOSAA, Volume 4, Issue 4, 629- April 1987.
    [22] http://gavab.escet.urjc.es/
    [23] R. Franke, Scattered data interpolation tests of some methods, Math. Comp. Vol. 38, pp. 181-200, 1982
    [24] K. Levenberg. A Method for the Solution of Certain Non-linear Problems in Least Squares. Quarterly of Applied Mathematics, 2(2):164–168, Jul. 1944

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE