簡易檢索 / 詳目顯示

研究生: 蔡仁靜
Tsai, Jen-Ching
論文名稱: 吸水性蠶絲蛋白為介電層之靛藍雙載子有機薄膜電晶體評估
Evaluation of silk fibroin as hygroscopic gate dielectric for indigo ambipolar Bio-OTFTs
指導教授: 黃振昌
Hwang, Jenn-Chang
口試委員: 冉曉雯
Zan, Hsiao-Wen
龔志榮
Gong, J. R.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 59
中文關鍵詞: 蠶絲蛋白靛藍吸水性介電層
外文關鍵詞: silk fibroin, indigo, hygroscopic dielectric
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蠶絲蛋白 (silk fibroin) 由蠶繭脫膠後萃取而得,靛藍 (indigo, C16H10N2O2)是常用於衣物染色之天然染料,已有文獻描述具雙載子特性。本實驗以水溶液製程蠶絲蛋白為介電層、熱蒸鍍靛藍薄膜為半導體,製備生物相容有機薄膜電晶體,並評估於不同環境濕度下元件電性表現。靛藍薄膜結晶性可藉由TTC
    (Tetratetracontane, C44H90) 層間層加入而改善,並使元件表現雙載子特性。真空下,元件p 型及n 型飽和區載子遷移率分別為9 × 10−5與0.05cm2V−1s−1,臨介電壓 (Vth) 分別為-90V 與80V;有高的n 型載子遷移率,但與p 型載子遷移率差異大,且操作偏壓高。於相對濕度20% ~ 50%下量測元件電性,發現在濕度30%下,元件有相近的n 型與p 型載子遷移率約為10−2cm2V−1s−1,臨
    介電壓約為±60V,是合適的元件操作濕度。若於濕度50%下量測元件,雖臨介電壓降至約為±30V,但n 型載子遷移率下降至10−3cm2V−1s−1。蠶絲蛋白組成胺基酸包括:絲胺酸 (Serine)、丙胺酸 (Alanine)、甘胺酸 (Glycine);其中,絲胺酸為極性胺基酸、氮氧原子上孤對電子、蛋白質碳端與氮端皆可能是使蠶絲蛋白具吸水性原因。含水環境下蠶絲蛋白介電層累積載子能力增加,而靛藍半導體則降低傳輸,推測所觀察之電性隨濕度變化為兩因素之抗衡。遲滯曲線量測結果為反向掃描汲極電流大於正向掃描電流,含水環境下遲滯曲線較真空下減少許多。


    Silk fibroin is a natural protein extracted from Cocoons of Bombyx mori.
    Indigo (C16H10N2O2) is a natural dye pigment used extensively on commodities and
    has been reported to have ambipolar transport characteristics. The objective of this
    work is to fabricate Bio-organic thin film transistors (Bio-OTFTs) by integrating
    thermal evaporated indigo thin film and solution-based silk fibroin and to evaluate
    the performance of ambipolar devices at different relative humidity. The crystal
    quality of indigo is improved by inserting a TTC (Tetratetracontane, C44H90)
    interlayer on silk fibroin so that both the p- and n- channel transport appear
    simultaneously in the indigo ambipolar Bio-OTFT. In vacuum, the operation voltage
    is up to 100 V and the p- and n- channel field effect mobility (μFE,sat) are
    respectively ca. 9 × 10−5 and 0.05cm2V−1s−1 in saturation region and the
    threshold voltages (VTH) are ca. -90 V and 80 V, respectively. In air ambient, the
    amino acid including Glycine, Serine and Alanine in silk fibroin make silk fibroin a
    hygroscopic dielectric material. At 30% relative humidity, the indigo ambipolar
    OTFT exhibits comparable μFE,sat of ca. 10−2cm2V−1s−1 for hole and electron.
    While the relative humidity increases to ca. 50%, the VTH reduces to ca. ±30 V but
    with a worse n-channel performance ca. 10−3cm2V−1s−1. Hysteresis shows a higher
    back scanning current and a larger VTH shift in vacuum than in 55% relative humidity
    during gate voltage sweep.

    摘要 I Abstract II 誌謝 III 圖目錄 IV 表目錄 VII 第一章 緒論 1 1-1前言 1 1-2研究動機 2 1-3有機薄膜電晶體結構與操作原理 3 1-4 OTFT效能擷取 5 1-4-1載子遷移率 5 1-4-2臨界電壓 5 1-4-3開關電流比 6 1-5有機半導體 (OSC) 載子傳輸機制 6 1-6雙載子有機薄膜電晶體 8 1-6-1 雙載子有機薄膜電晶體基本操作 8 第二章 文獻回顧 10 2-1 生物有機電子 10 2-1-1介電層與層間層 (interlayer) 發展 10 2-1-2有機半導體發展 11 2-2靛藍 (indigo) 染料簡介 13 2-2-1 indigo染料發展 13 2-2-2 indigo薄膜應用於電子元件 14 2-2-3 indigo應用於有機薄膜電晶體 15 2-2-4 indigo的氫鍵 (H-bonding) 15 2-3吸水性蛋白質介電材料 16 2-4遲滯現象成因 17 2-5 Tetratetracontane (C44H90, TTC) 層間層 18 2-6 元件n型載子空氣穩定性 19 第三章 研究流程與方法 20 3-1 蠶絲蛋白製備及旋轉塗佈 22 3-1-1 蠶絲蛋白溶液製備 22 3-1-2旋轉塗佈 (spin coating) 製程 23 3-2有機小分子及金屬熱蒸鍍 23 3-2-1熱蒸鍍原理及真空配置 23 3-2-2 熱蒸鍍使用之藥品名細 24 3-3基板製備 24 3-4 量測環境濕度控制 24 3-5 分析儀器 25 3-5-1 原子力顯微鏡 ( AFM) 25 3-5-2低掠角X光繞射分析 (GIXRD) 26 3-5-3 掃描式電子顯微鏡 (SEM) 27 3-5-4有機薄膜電晶體電性量測 28 3-5-5準靜態電容電壓量測 (QSCV) 28 第四章 結果與討論 30 4-1 indigo薄膜與蠶絲蛋白介電層搭配 30 4-2 加入C44H90 (TTC) 層間層 (interlayer) 能改善電性 31 4-3 TTC層間層對indigo薄膜影響及形貌最佳化 32 4-3-1 使用TTC層間層對indigo薄膜表面形貌影響 32 4-3-2 使用TTC層間層對indigo薄膜結晶性影響 33 4-3-3 TTC層間層之表面形貌及熱處理 34 4-3-4 元件電性量測 35 4-3-5真空下電性量測以排除環境濕度影響 36 4-4 濕度對吸水性蠶絲蛋白為介電層之indigo雙載子有機薄膜電晶體影響 39 4-4-1 indigo ambipolar OTFT 於不同相對溼度下電性表現 40 4-4-2 遲滯現象 48 第五章 結論 50 第六章 未來展望 51 參考文獻 52 附錄一 56 附錄二 58

    參考文獻
    [1] Mihai Irimia-Vladu, Chem. Soc. Rev., 2014, 43, 588
    [2] T. G. Gutowski, M. S. Branham, J. B. Dahmus, A. J. Jones, A. Thiriez, and D. P. Sekulic, Environ. Sci. Technol., 2009, 43, 1584–1590
    [3] M. Irimia-Vladu, P.A. Troshin,M. Reisinger, L. Shmygleva,Y. Kanbur,
    G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus,
    V. F. Razumov, H. Sitter, N. S. Sariciftci, S. Bauer, Adv. Funct. Mater. , 2010, 20, 4069–4076
    [4] Hagen Klauk, Chem. Soc. Rev., 2010, 39, 2643–2666
    [5] Christopher R. Newman, C. Daniel Frisbie, Demetrio A. da Silva Filho,
    Jean-Luc Bre´das, Paul C. Ewbank, and Kent R. Mann, Chem. Mater., 2004, 16, 4436 - 4451
    [6] J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett., 2007, 90, 102120
    [7] P. Stallinga, Adv. Mater., 2011, 23, 3356–3362
    [8] Gilles Horowitz, Riadh Hajlaoui, and Philippe Delannoy, Journal de Physique III, 1995, 355-371
    [9] Jana Zaumseil and Henning Sirringhaus, Chem. Rev., 2007, 107, 1296−1323
    [10] Birendra Singh, Niyazi Serdar Sariciftci, James G. Grote, and Frank K. Hopkins, J. Appl. Phys., 2006, 100, 024514
    [11] Mihai Irimia-Vladu, Pavel A. Troshin, Melanie Reisinger, Guenther Schwabegger, Mujeeb Ullah, Reinhard Schwoediauer, Alexander Mumyatov, Marius Bodea, Jeffrey W. Fergus, Vladimir F. Razumov, Helmut Sitter, Siegfried Bauer, Niyazi Serdar Sariciftci, Organic Electronics, 2010, 11, 1974–1990
    [12] Chung-Hwa Wang, Chao-Ying Hsieh, and Jenn-Chang Hwang, Adv. Mater., 2011, 23, 1630–1634
    [13] Jer-Wei Chang, Cheng-Guang Wang, Chong-Yu Huang, Tzung-Da Tsai, Tzung-Fang Guo, and Ten-Chin Wen, Adv. Mater., 2011, 23, 4077–4081
    [14] Alex Dezieck, Orb Acton, Kirsty Leong, Ersin Emre Oren, Hong Ma, Candan Tamerler, Mehmet Sarikaya, and Alex K.-Y. Jen, Appl. Phys. Lett., 2010, 97, 013307
    [15] Maria Daniela Angione, Serafina Cotrone, Maria Magliulo, Antonia Mallardi, Davide Altamura, Cinzia Giannini, Nicola Cioffi, Luigia Sabbatini, Emiliano Fratini, Piero Baglioni , Gaetano Scamarcio, Gerardo Palazzo, and Luisa Torsi, PNAS, 2012, 109, 6429-6434
    [16] Eric Daniel Głowacki, Lucia Leonat, Gundula Voss, Marius Bodea, Zeynep Bozkurt, Mihai Irimia-Vladu, Siegfried Bauer, Niyazi Serdar Sariciftci, SPIE, 2011, Vol. 8118
    [17] Eric Daniel G1owacki, Mihai Irimia-Vladu, Siegfried Bauer, and Niyazi Serdar Sariciftci, J. Mater. Chem. B, 2013, 1, 3742–3753
    [18] Eric Daniel Głowacki, Mihai Irimia-Vladu, Martin Kaltenbrunner, Jacek Ga¸siorowski, Matthew S. White, Uwe Monkowius, Giuseppe Romanazzi, Gian Paolo Suranna, Piero Mastrorilli, Tsuyoshi Sekitani, Siegfried Bauer, Takao Someya, Luisa Torsi, Niyazi Serdar Sariciftci, Adv. Mater., 2013, 25, 1563–1569
    [19] Zikai He, Danqing Liu, Renxin Mao, Qin Tang, Qian Miao, Org. Lett., 2012, Vol. 14, No. 4
    [20] Qin Tang, Zhixiong Liang, Jing Liu, Jianbin Xu, and Qian Miao, Chem. Commun., 2010, 46, 2977–2979
    [21] Zhongming Wei, Wei Hong, Hua Geng, Chengliang Wang, Yaling Liu,
    Rongjin Li, Wei Xu, Zhigang Shuai, Wenping Hu, Quanrui Wang, Daoben Zhu, Adv. Mater., 2010, 22, 2458–2462
    [22] wikipedia:Indigo dye
    [23] wikipedia:Indigo white
    [24] IARC MONOGRAPHS VOLUME 99
    [25] K. UEHARA, K. TAKAGISHI and M. TANAKA, Solar Cells, 1987, 22, 295-301
    [26] J. Brunet, L. Spinelle, A. Pauly, M. Dubois, K. Guerin, M. Bouvet, C. Varenne, B. Lauron, A. Hamwi, Organic Electronics, 2010, 11, 1223–1229
    [27] Daniel J. Burke and Darren J. Lipomi, Energy Environ. Sci., 2013, 6, 2053–2066
    [28] Mihai Irimia-Vladu, Eric D. Głowacki, Pavel A. Troshin, Günther Schwabegger, Lucia Leonat, Diana K. Susarova, Olga Krystal, Mujeeb Ullah, Yasin Kanbur, Marius A. Bodea, Vladimir F. Razumov, Helmut Sitter, Siegfried Bauer, and Niyazi Serdar Sariciftci, Adv. Mater., 2012, 24, 375–380
    [29] F. Kettner, L. Hüter, J. Schäfer, K. Röder, U. Purgahn and H. Krautscheid, Acta Cryst., 2011, E67, o2867
    [30] Maxwell J. Robb, Sung-Yu Ku, Fulvio G. Brunetti, Craig J. Hawker, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 1263–1271
    [31] Li-Shiuan Tsai, Jenn-Chang Hwang, Chun-Yi Lee, Yi-Ting Lin, Cheng-Lun Tsai, Ting-Hao Chang, Yu-Lun Chueh, Hsin-Fei Meng, Appl. Phys. Lett., 2013 103, 233304
    [32] Lung-Kai Mao, Jenn-Chang Hwang, Ting-Hao Chang, Chao-Ying Hsieh, Li-Shiuan Tsai, Yu-Lun Chueh, Shawn S.H. Hsu, Ping-Chiang Lyu, Ta-Jo Liu, Organic Electronics, 2013,14, 1170–1176
    [33] Chun-Yi Lee, Jenn-Chang Hwang, Yu-Lun Chueh, Ting-Hao Chang, Yi-Yun Cheng, Ping-Chiang Lyu, Organic Electronics, 2013, 14, 2645–2651
    [34] Chao-Ying Hsieh, Jenn-Chang Hwang, Ting-Hao Chang, Jiun-Yi Li, Shih-Han Chen, Lung-Kai Mao, Li-Shiuan Tsai, Yu-Lun Chueh, Ping-Chiang Lyu, Shawn S. H. Hsu, Appl. Phys. Lett., 2013, 103, 023303
    [35] Taeho Jung, Ananth Dodabalapur, Robert Wenz, Siddharth Mohapatra, Appl. Phys. Lett., 2005, 87, 182109
    [36] Hsiao-Wen Zan and Ting-Yu Hsu, IEEE ELECTRON DEVICE LETTERS, 2011, VOL. 32, NO. 8
    [37] Martin Egginger, Siegfried Bauer, Reinhard Schwo¨diauer, Helmut Neugebauer, Niyazi Serdar Sariciftci, Monatsh Chem., 2009, 140, 735–750
    [38] D. K. Hwang, Min Suk Oh, Jung Min Hwang, Jae Hoon Kim, Seongil Im, Appl. Phys. Lett., 2008, 92, 013304
    [39] Cheon An Lee, Dong-Wook Park, Keum-Dong Jung, Byung-ju Kim, Yoo Chul Kim, Jong Duk Lee, Byung-Gook Park, Appl. Phys. Lett., 2006, 89, 262120
    [40] T. Cahyadi, H. S. Tan, S. G. Mhaisalkar, P. S. Lee, F. Boey, Appl. Phys. Lett., 2007, 91, 242107
    [41] Tzung-Da Tsai, Jer-Wei Chang, Ten-Chin Wen, Tzung-Fang Guo, Adv. Funct. Mater., 2013, 23, 4206–4214
    [42] Michael Kraus, Simon Haug, Wolfgang Brütting, Andreas Opitz, Organic Electronics, 2011, 12, 731–735
    [43] Andreas Opitz, Matthias Horlet, Marc Kiwull, Julia Wagner, Michael Kraus,
    Wolfgang Brütting, Organic Electronics, 2012, 13, 1614–1622
    [44] Satoshi Ogawa, Yasuo Kimura, and Michio Niwano, Appl. Phys. Lett., 2007, 90, 033504
    [45] D. K. Hwang, Kimoon Lee, Jae Hoon Kim, Seongil Im, Ji Hoon Park, Eugene Kim, Appl. Phys. Lett., 2006, 89, 093507
    [46] D.M. de Leeuw, M.M.J. Simenon, A.R. Brown, R.E.F. Einerhand, Synthetic Metals, 1997, 87, 53-59
    [47] Hakan Usta, Chad Risko, Zhiming Wang, Hui Huang, Murat K. Deliomeroglu,
    Aleksandr Zhukhovitskiy, Antonio Facchetti, Tobin J. Marks, J. AM. CHEM. SOC., 2009, VOL. 131, NO. 15
    [48] Hakan Usta, Choongik Kim, Zhiming Wang, Shaofeng Lu, Hui Huang, Antonio Facchetti, Tobin J. Marks, J. Mater. Chem., 2012, 22, 4459
    [49] Lay-Lay Chua, Jana Zaumseil, Jui-Fen Chang, Eric C.-W. Ou, Peter K.-H. Ho, Henning Sirringhaus, Richard H. Friend, NATURE, 2005, VOL 434, 10 March

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE