簡易檢索 / 詳目顯示

研究生: 彭慶翔
Peng, Ching-Shiang
論文名稱: 原子層化學氣相沉積之氧化鉿材料於電阻式記憶體之改善與應用
Atomic Layer Deposition of HfO2 Materials for Resistive Random Access Memory Improvement and Application
指導教授: 林樹均
口試委員: 曾俊元
蔡銘進
闕郁倫
張文淵
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 149
中文關鍵詞: 電阻式記憶體電阻轉換效應原子層化學氣相沉積氧化鉿
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,內容著重在於氧化鉿基電阻式記憶體的改善以及應用。所有電阻式記憶體元件皆由氧化鉿為主要材料,且皆由原子層化學氣相沉積方法製備。
    氧化鉿為一過渡金屬,因其卓越的物理性質,如:高介電常數、能帶寬度適宜以及優異的熱穩定度,被廣泛應用於半導體產業中。除了應用在高介電常數/金屬閘極的疊層中,以氧化鉿為基礎的電阻式記憶體也引起廣泛注意並被視為下一世代非揮發性記憶體的重要材料。氧化鉿基電阻式記憶體內部傳導是由電致生成導電細絲,並擁有優良的雙極性電阻轉換效應,在未來的電阻式記憶體應用中備受期待。然而,不明確的電阻傳導機制以及不穩定的電阻轉換行為是電阻式記憶體遲遲無法實際應用的原因。電阻式記憶體中不穩定的電阻轉換行為是由於在每次的電阻轉換時,將使薄膜內部傳導路徑不規則分布,進而影響轉換電壓及電阻之穩定性。因此,如何提升電阻轉換效應的穩定度是電阻式記憶體在實際應用上的主要課題。在本文之第4章以及第5章,採用摻雜以及嵌入金屬層的方法控制導電細絲生成,提升了氧化鉿基電阻式記憶體的穩定度。藉由原子層化學氣相沉積方法摻雜鋁於氧化鉿薄膜後,使得Hf-Al-O鍵結形成,降低了氧空缺生成能,鋁離子附近形成可控制之導電路徑。而嵌入鉿金屬層不只可改善電阻換效應,更使得操作極性反轉。Pt/Hf/HfO2/TiN電阻式記憶體原件中產生之HfOx介面層,不僅是讓氧化還原反應固定在介面層,控制了傳導路徑,更使得導電機制由法蘭克-普爾穿隧轉換為空間電荷侷限電流,進而影響了操作極性反轉。第6章則提出Pt/NiO/HfO2/TiN氧化物選擇器,施加交互電壓後,可使其具有穩定且類似臨界轉換特性。施加交互電壓可平衡薄膜之內部缺陷,呈現類似臨界轉換的揮發記憶體特性。此具有臨界轉換特性的揮發性氧化物選擇器,預計可相容於雙極性電阻式記憶體之高密度堆疊。


    In this thesis, we focus on HfO2-based resistive random access memory (RRAM) researches in improvement and application. All the RRAM devices using HfO2 as a main material are prepared by the atomic-layer-deposition (ALD) technique with remote-plasma system.
    The transition metal oxide, HfO2, is already widely used in semiconductor industries because of its superior physical properties, such as large permittivity, subsequent band gap, and excellent thermal stability. In addition to its use as high-k/metal gate stacks, HfO2-based RRAM has attracted significant attention for its potential in next-generation nonvolatile memory. HfO2-based RRAM devices are formed by an electric-field induced conductive filaments formation/rupture process, and possess superior bipolar resistive switching for future RRAM applications. However, the indefinite resistive switching mechanism and unstable resistive switching behaviors prevent RRAM from being put into practice. The localized filamentary conducting paths in the thin films are diverse in each switching, leading to the nonuniform distributions of switching voltages and resistance states, which result in irresolvable errors in the RRAM operations. Thus, how to effectively improve the stability of switching behavior is an essential issue for practical application of the RRAM. In Chapter 4 and Chapter 5, we use methods of doping and inserting metal layer to control the filaments formation and to stable the resistive switching behaviors of HfO2 RRAM devices. By the ALD doping of Al:HfO2 films, Hf-Al-O bonding formed in the Al:HfO2 films decreases the formation energy of oxygen vacancies and forms controllable conducting filaments along Al atoms. Inserting a Hf metal layer not only improves resistive switching characteristics but also makes polarity operation reversed. The interface HfOx generated in the Pt/Hf/HfO2/TiN devices makes redox fixed near the interface and the conduction mechanism switch to SCLC mechanism from Poole-Frenkel emission, leading to a polarity reversion. Chapter 6 proposes an oxide selector (Pt/NiO/HfO2/TiN) which was verified to exhibit similar, stable threshold switching characteristics by applying mutual bias. The mutual bias could balance the internal defects, which are produced by the interaction between conductive NiO and HfO2 thin films, to present such a similar threshold switching behavior. This volatile oxide selector with a similar threshold switching property is compatible with bipolar RRAM crossbar array applications.

    Abstract 摘要 List of Contents List of Figures List of Tables Chapter 1 1.1 Introduction of memories 1.1.1 Volatile memory 1.1.2 Nonvolatile memory 1.2 Next-generation nonvolatile memory candidates 1.2.1 Ferroelectric Random Access Memory (FeRAM) 1.2.2 Magnetoresistive Random Access Memory (MRAM) 1.2.3 Phase Change Random Access Memory (PCRAM) 1.2.4 Resistive Random Access Memory (RRAM) Chapter 2 2.1 History of RRAM 2.1.1 Origin of resistive switching behavior 2.1.2 Practical application of RRAM devices 2.1.3 Understanding switching mechanism and improving performance 2.1.4 Three-dimensional (3D) stackable architecture for high-density memory applications 2.2 Basic structure and operation of RRAM devices 2.2.1 Metal-insulator-metal structure 2.2.2 Forming process 2.2.3 Electrical characteristics 2.3 Resistive switching mechanisms 2.3.1 Electrochemical metallization effect 2.3.2 Valence change effect 2.3.3 Thermochemical memory effect 2.4 Carrier conduction mechanisms 2.4.1 Ohmic conduction 2.4.2 Schottky emission 2.4.3 Poole-Frenkel emission 2.4.4 Space-charge-limited current 2.5 Challenges for RRAM 2.5.1 Forming voltage 2.5.2 Operation current 2.5.3 Operation variation 2.5.4 Device yield 2.5.5 Scalability 2.6 Improvement of resistive switching behaviors 2.6.1 Embedding nanocrystals 2.6.2 Bi-layer structures 2.6.3 Doping effect 2.7 Crossbar resistive switching memory 2.7.1 One diode one resistor (1D1R) 2.7.2 One selector one resistor (1S1R) 2.8 Conclusion Chapter 3 3.1 Atomic layer deposition system 3.1.1 Introduction 3.1.2 ALD process 3.2 Sputtering system 3.3 Fabrication of resistive switching memory devices 3.3.1 Substrate 3.3.2 Deposition of metal oxide resistive layer 3.3.3 Deposition of top electrode 3.4 Material analyses 3.4.1 Grazing Incidence X-ray Diffraction (GIXRD) 3.4.2 X-ray photoelectron spectroscopy 3.4.3 Transmission electron microscopy 3.5 Electrical analyses 3.5.1 Current-voltage measurement 3.5.2 Endurance measurement 3.5.3 Data retention time measurement Chapter 4 4.1 Motivation 4.2 Introduction 4.3 Experimental details 4.4 Results and discussions 4.4.1 Comparisons between HfO2 and doping HfO2-based RRAM 4.4.2 Doping induces activation energy decrease and ON/OFF ratio decay 4.4.3 Retention tests under thermal treatments 4.5 Conclusion Chapter 5 5.1 Motivation 5.2 Introduction 5.3 Experimental details 5.4 Results and discussion 5.4.1 The phenomenon of reverse I-V curves in HfO2 and Hf/HfO2 RRAM devices 5.4.2 Different conductions inducing reverse polarity 5.4.3 Interface production effects the change of conduction mechanism 5.4.4 Extrapolation of a possible switching mechanism in Pt/Hf/HfO2/TiN devices 5.4.5 Improving electrical performance of Pt/Hf/HfO2/TiN devices 5.5 Conclusion Chapter 6 6.1 Motivation 6.2 Introduction 6.3 Experimental details 6.4 Results and discussion 6.4.1 Individual thin film properties in HfO2 and NiO 6.4.2 Similar threshold switching behavior in NiO/HfO2 6.4.3 Mutual voltage is applied to maintain a bistable selector behavior 6.5 Conclusion Chapter 7 7.1 Summary 7.2 Suggestions and future work Reference

    [1] Storage as defined in Microsoft Computing Dictionary, 4th Ed. (c)1999 or in The Authoritative Dictionary of IEEE Standard Terms, 7th Ed., (c) 2000.
    [2] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li, and C. J. Radens, Challenges and future directions for the scaling of dynamic random-access memory (DRAM)”, IBM J. RES. & DEV., vol. 46, no. 2/3, pp.187, 2002
    [3] J. P. Kulkarni, K. Kim, and K. Roy, ”A 160 mV Robust Schmitt Trigger Based Subthreshold SRAM”, IEEE J. Solid-state Circuits, vol. 42, no. 10, pp. 2303-2313, 2007
    [4] W. Mueller and M. Kund, “Future memory technologies”, Proc. SPIE 7363, VLSI Circuits and Systems IV, pp. 73630, 2009.
    [5] M. T. Bohr, “Nanotechnology Goals and Challenges for Electronic Applications”, IEEE Transactions on Nanotechnology, vol. 1, no. 1, pp. 56-62, 2002.
    [6] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol. 46, pp. 1288, 1967.
    [7] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, 3rd ed. New York: Wiley, 2007.
    [8] K. Kim, J. H. Choi, and H.-S. Jeong, “The future prospect of nonvolatile memory,” in Proc. VLSI-TSA-Tech., 2005, pp. 88-94.
    [9] T. Nakamura, Y. Fujimori, N. Izumi, and A. Kamisawa, “Fabrication technology of ferroelectric memories,” Jpn. J. Appl. Phys., vol. 37, no. 3B, pp. 1325-1327, 1998.
    [10] R. Moazzami, “Ferroelectric thin film technology for semiconductor memory,” Semicond. Sci. Technol., vol. 10, pp. 375-390, 1995.
    [11] T. Hayashi, Y. Igarashi, D. Inomata, T. Ichimori, T. Mitsuhashi, K. Ashikaga, T. Ito, M. Yoshimaru, M. Nagata, S. Mitarai, H. Godaiin, T. Nagahama, C. Isobe, H. Moriya, M. Shoji, Y. Ito, H. Kuroda, and M. Sasaki, “A novel stack capacitor cell for high density FeRAM compatible with CMOS logic,” in IEDM Tech. Dig., 2002, pp. 543-546.
    [12] J. M. Slaughter, R. W. Dave, M. Durlam, G. Kerszykowski, K. Smith, K. Nagel, B. Feil, J. Calder, M. DeHerrera, B. Garni, and S. Tehrani, “High speed toggle MRAM with MgO-based tunnel junctions,” in IEDM Tech. Dig., 2005, pp. 873-876.
    [13] R. Leuschner, U. K. Klostermann, H. Park, F. Dahmani, R. Dittrich, C. Grigis, K. Hernan, S. Mege, C. Park, M. C. Clech, G. Y. Lee, S. Bournat, L. Altimime, and G. Mueller, “Thermal select MRAM with a 2-bit cell capability for beyond 65 nm technology node,” in IEDM Tech. Dig., 2006.
    [14] C. C. Hung, Y. S. Chen, D. Y. Wang, Y. J. Lee, W. C. Chen, Y. H. Wang, C. T. Yen, S. Y. Yang, K. H. Shen, C. P. Chang, C. S. Lin, K. L. Su, H. C. Cheng, Y. J. Wang, D. D.-L. Tang, M. J. Tsai, and M. J. Kao, “Adjacent-reference and self-reference sensing scheme with novel orthogonal wiggle MRAM cell,” in IEDM Tech. Dig., 2006.
    [15] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys., vol. 69, no. 5, pp. 2849-2856, 1991.
    [16] S. Lai and T. Lowrey, “OUM - a 180 nm nonvolatile memory cell element technology for stand alone and embedded applications,” in IEDM Tech. Dig., 2001, pp. 803-806.
    [17] G. Dearnaley, A. M. Stoneham, and D. V. Morgan, “Electrical phenomena in amorphous oxide films,” Rep. Prog. Phys., vol. 33, pp. 1129-1191, 1970.
    [18] D. P. Oxley, “Electroforming, switching and memory effects in oxide thin films,” Electrocomponent Sci. Technol., vol. 3, pp. 217-224, 1977.
    [19] H. Pagnia and N. Sotnik, “Bistable switching in electroformed metal-insulator-metal devices,” Phys. Stat. Sol. (a), vol. 108, pp. 11-65, 1988.
    [20] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Mater., vol. 6, pp. 833-840, 2007.
    [21] R. Bez, A. Pirovano, “Non-volatile memory technologies: emerging concepts and new materials,” Materials Science in Semiconductor Processing, vol. 7, 349-355, 2004.
    [22] R. Waser, “ Nanoelectronics and Information Technology”, Wiley VCH
    [23] R. Sbiaa, H. Meng, and S. N. Piramanayagam, “Materials with perpendicular magnetic anisotropy for magnetic random access memory,” Phys. Status Solidi RRL, No. 12, pp. 413-419, 2011.
    [24] J. G. Simmons and R. R. Verderber, “New conduction and reversible memory phenomena in thin film insulating films,” Proc. R. Soc. A., vol. 301, pp. 77-102, 1967.
    [25] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, and C. S. Hwang, K. Szot and R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, pp. 033715, 2005.
    [26] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Iganatiev, “Novell colossalmagnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM Tech. Dig., 2002, pp. 193-196.
    [27] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U.-I. Chung, and J. T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” in IEDM Tech. Dig., 2004, pp. 587-590.
    [28] J. F. Gibbons and W. E. Beadle, “Switching properties of thin NiO films,” Solid-State Electronics, vol. 7, pp. 785-797, 1964.
    [29] S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K.Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Kawai, K. Shimakawa, A. Odagawa, and T. Takagi, “Fast switching and long retention Fe-O ReRAM and its switching mechanism,” in IEDM Tech. Dig., 2007, pp. 779-782.
    [30] H. Akinaga, and H. Shima, “Resistive random access memory (ReRAM) based on metal oxides,” Proceedings of the IEEE, vol. 98, pp. 2237-2251, 2010.
    [31] E. Linn, R. Rosezin, C. Kügeler and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Mater., vol. 9, pp. 403-406, 2010.
    [32] S. R. Ovshinsky, U.S. Patent 3, 052, 830, 1962
    [33] H. Pagnia, and S. Sotni, “Bistable Switching in Electroformed Metal-Insulator-Metal Devices,” Phys. Stat. Sol. (a), vol. 108, pp.11-65, 1988.
    [34] S. B. Lee, H. K. Yoo, K. Kim, J. S. Lee, Y. S. Kim, S. Sinn, D. Lee, B. S. Kang, B. Kahng, and T. W. Noh, “Forming mechanism of the bipolar resistance switching in double-layer memristive nanodevices,” Nanotechnology, vol. 23, pp. 315202, 2012.
    [35] J. S. Lee and B. Kahng, “Scaling behaviors of the voltage distribution in dielectric breakdown networks,” Phys. Rev. E, vol. 83, pp. 052103, 2011.
    [36] J. Joshua Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R Stewart, C. N. Lau, and R. S. Williams, “The mechanism of electroforming of metal oxide memristive switches,” Nanotechnology, vol. 20, pp. 215201, 2009.
    [37] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. Y. Tseng, and C. Hu, “Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode,” J. Appl. Phys., vol. 102, pp. 094101, 2007.
    [38] M. N. Kozicki, M. Mitkova, in Nanotechnology, Vol. 3(Ed: R. Waser), Wiley-VCH, Weinheim 2008.
    [39] C. Schindler, M. Meier, R. Waser, M. N. Kozicki, in Proc. IEEE Non-Volatile Memory Technology Symp., pp. 82, 2007.
    [40] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, pp. 2632-2663, 2009
    [41] Y. Hirose, H. Hirose, “Polaritydependent memory switching and behavior of Ag dendrite in Ag photodoped amorphous As2S3 films,” J. Appl. Phys., vol. 47, pp. 2767, 1976.
    [42] R. Waser, “Resistive non-volatile memory devices (Invited Paper),” Microelectronic Engineering, vol. 86, pp. 1925-1928, 2009
    [43] T. Baiatu, R. Waser, K.H. Hardtl, “dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism,” J. Am. Cer. Soc., vol. 73, pp. 1663, 1990.
    [44] K. Szot, W. Speier, G. Bihlmayer, R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3.” Nat. Mater., Vol. 5, pp. 312, 2006.
    [45] J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices, ” nature nanotechnology, vol. 3, pp. 429, 2008.
    [46] D.C. Kim, S. Seo, S.E. Ahn, D.-S. Suh, M.J. Lee, B.-H. Park, I.K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phys. Lett., vol. 88, pp. 202102, 2006.
    [47] D. Jeong, H. Schroeder, and R. Waser, “Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack Dielectric Science and Materials,” Electrochem. Solid-State Lett., Vol. 10, pp. G51, 2007.
    [48] J. J. O’Dwyer, The Theory of Electrical Conduction and Breakdown in Solid Dielectrics, Clarendon, Oxford 1973.
    [49] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, and T. Y. Tseng, “Resistive switching mechanisms of V-doped SrZrO3 memory films,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 725-727, 2006.
    [50] Hughes, E, Electrical Technology, pp.10, Longmans, 1969.
    [51] X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang, “Reproducible unipolar resitance switching in stoichiometric ZrO2 films,” Appl. Phys. Lett., vol. 90, pp. 183507, 2007.
    [52] C. Y. Lin, S. Y. Wang, D. Y. Lee, and T. Y. Tseng, “Electrical Properties and Fatigue Behaviors of ZrO2 Resistive Switching Thin Films,” J. Electrochem. Soc., vol. 155, pp. H615-H619, 2008.
    [53] M. H. Lin, M. C. Wu, C. H. Lin, and T. Y. Tseng, “Effects of vanadium doping on resistive switching characteristics and mechanisms of SrZrO3-based memory films,” IEEE Trans. Electron Device, vol. 57, no. 8, pp. 1801-1808, 2010.
    [54] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and Hyunsang Hwang, “Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures,” Appl. Phys. Lett., vol. 90, pp. 042107, 2007.
    [55] X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen and X. Cheng, “Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3films for memristor applications,” J. Appl. Phys. vol. 106, pp. 073723, 2009
    [56] L. Goux, J. G. Lisoni, X. P. Wang, M. Jurczak, and D. J. Wouters, “Optimized Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells,” IEEE Tran. Electron. Devices, vol. 56, pp. 2363-2368, 2009
    [57] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in IEDM Tech. Dig., 2008, pp. 297-300.
    [58] Y. S. Chen, H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, F. Chen, M. J. Tsai, and C. Lien, “An Ultrathin Forming-Free HfOx Resistance Memory With Excellent Electrical Performance,” IEEE Electron Device Lett., vol. 31, pp. 1473, 2010.
    [59] Z. Fang, H. Y. Yu, X. Li, N. Singh, G. Q. Lo, and D. L. Kwong, “HfOx/TiOx/HfOx/TiOx Multilayer-Based Forming-Free RRAM Devices With Excellent Uniformity,” IEEE Electron Device Lett., vol. 32, pp. 566, 2011.
    [60] D. Y. Lee and T. Y. Tseng, “Forming-free resistive switching behaviors in Cr-embedded Ga2O3 thin film memories,” J. Appl. Phys., vol. 110, pp. 114117, 2011.
    [61] B. S. Kang, S.-E. Ahn, M.-J. Lee, G. Stefanovich, K. H. Kim, W. X. Xianyu, C. B. Lee, Y. Park, I. G. Baek, and B. H. Park, “High-Current-Density CuOx/InZnOx Thin-Film Diodes for Cross-Point Memory Applications” Adv. Mater., vol. 20, pp.3066, 2008.
    [62] S. I. Kim, J. H. Lee, Y. W. Chang, S. S. Hwang, and K.-H. Yoo, “Reversible resistive switching behaviors in NiO nanowires,” Appl. Phys. Lett., vol. 93, pp. 033503, 2008.
    [63] S.-E. Ahn, M.-J. Lee, Y. Park, B. S. Kang, C. B. Lee, K. H. Kim, S. Seo, D.-S. Suh, D.-C. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. Yin, I.-K. Yoo, J.-H. Lee, J.-B. Park, I.-G. Baek, and B. H. Park, “Write Current Reduction in Transition Metal Oxide Based Resistance-Change Memory,” Adv. Mater. (Weinheim, Ger.), vol. 20, pp. 924, 2008.
    [64] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, “Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance,” Appl. Phys. Lett., vol. 93, pp. 033506, 2008.
    [65] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, and B. H. Park, “Conductivity switching characteristics and reset currents in NiO films,” Appl. Phys. Lett., vol. 86, no. 9, pp. 093509, 2005.
    [66] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, “Lowering the switching current of resistance random access memory using a hetero junction structure consisting of transition metal oxides,” Jpn. J. Appl. Phys., vol. 45, no. 37, pp. L991-L994, 2006.
    [67] I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon, and B. I. Ryu, “Multi-layer cross- point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” in IEDM Tech. Dig., 2005, pp. 750-753.
    [68] J. Lee, E.M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, and H. Hwang, “Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications,” Appl. Phys. Lett., vol. 97, pp. 172105, 2010.
    [69] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 366-368, 2007.
    [70] H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, “Ionic doping effect in ZrO2 resistive switching memory” Appl. Phys. Lett., vol. 96, pp. 123502, 2010.
    [71] C.-S. Peng, Y.-H. Lee, M.-H. Lin, and W.-Y. Chang, “Improvement of resistive switching stability of HfO2 films with Al doping by atomic layer deposition,” Electrochem. Solid-State Lett., vol. 15, (4), pp. H88-H90, 2012.
    [72] L. Chen, Y. Xu, Q.-Q. Sun, P. Zhou, P.-F. Wang, S.-J. Ding, and D. W. Zhang,” Atomic-Layer-Deposited HfLaO-Based Resistive Switching Memories With Superior Performance,” IEEE Electron Device Lett., vol. 31, pp. 1296, 2010.
    [73] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, “Resistive switching memory effect of ZrO2 films with Zr+ implanted,” Appl. Phys. Lett., vol. 92, no. 1, pp. 012117, 2008.
    [74] C.-H. Ho, C.-L. Hsu, C.-C. Chen, J.-T. Liu, C.-S. Wu, C.-C. Huang, C. Hu*, and F.-L. Yang, “9 nm Half-Pitch Functional Resistive Memory Cell with <1 µA Programming Current Using Thermally Oxidized Sub-Stochiometric WOx Film,” in IEDM Tech. Dig., 2010, pp. 436.
    [75] Q. Xia, “Nanoscale resistive switches: devices, fabrication and integration,” Appl. Phys. A, vol. 102, pp. 955-965, 2011.
    [76] M. B. Leslie, and R. J.Baker, “Noise-shaping sense amplifier for MRAM cross-point arrays,” IEEE J. Solid-State Circuits, vol. 41, pp.699-704 (2006).
    [77] C. W. Cheng, Y.-C. Tseng, T.-B. Wu, and L.-J. Chou, “Enhanced polar-ization switching characteristics of Pb(Zr0.5Ti0.5)O3-Pt nanocomposite thin films,” J. Mater. Res., vol. 19, no. 4, pp. 1043-1049, 2004.
    [78] W. Guan, S. Long, R. Jia, and M. Liu, “Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide,” Appl. Phys. Lett., vol. 91, pp. 062111, 2007.
    [79] W.-Y. Chang, K.-J. Cheng, J.-M. Tsai, H.-J. Chen, F.Chen, M.-J. Tsai, and T.-B.Wu, “Improvement of resistive switching characteristics inTiO2 thin films with embedded Pt nanocrystals,” Appl. Phys. Lett., vol. 95, pp. 042104, 2009.
    [80] L. Chen, H.-Y. Gou, Q.-Q. Sun, P. Zhou, H.-L. Lu, P.-F. Wang, S.-J. Ding, and D. W. Zhang, “Enhancement of Resistive Switching Characteristics in Al2O3-Based RRAM With Embedded Ruthenium Nanocrystals,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 794, 2011.
    [81] D. Panda, A. Dhar, and S. K. Ray, “Nonvolatile Memristive Switching Characteristics of TiO2 Films Embedded With Nickel Nanocrystals,” IEEE Transactions on Nanotechnology, vol. 11, pp. 51, 2012.
    [82] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Highly Scalable Hafnium Oxide Memory with Improvements of Resistive Distribution and Read Disturb Immunity,” in IEDM Tech. Dig., 2009, pp. 105-108.
    [83] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Evidence and solution of Over-RESET Problem for HfOX Based Resistive Memory with Sub-ns Switching Speed and High Endurance,” in IEDM Tech. Dig., 2010, pp. 460-463.
    [84] S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, F. T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, and M. J. Tsai, “A 5ns Fast Write Multi-Level Non-Volatile 1 K bits RRAM Memory with Advance Write Scheme,” in VLSI Circuits Symposium, 2009, pp. 82.
    [85] Y.-S. Chen, T.-Y. Wu, P.-J. Tzeng, P.-S. Chen, H.-Y. Lee, C.-H. Lin, F. T. Chen, and M. J. Tsai, “Forming-free HfO2 Bipolar RRAM Device with Improved Endurance and High Speed Operation,” in VLSI TSA, 2009, pp. 37.
    [86] P.-Y. Gu, Y.-S. Chen, H.-Y. Lee, P.-S. Chen, W.-H. Liu, W.-S. Chen, Y.-Y. Hsu, F. T. Chen, and M. J. Tsai, “Scalability with silicon nitride encapsulation layer for Ti/HfOx pillar RRAM,” in VLSI TSA, 2010, pp. 146.
    [87] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, W. H. Liu, W. S. Chen, C. H. Tsai, C. H. Lin, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Comprehensively study of read disturb immunity and optimal read scheme for high speed HfOx based RRAM with a Ti layer,” in VLSI TSA, 2010, pp. 132.
    [88] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, W. H. Liu, W. S. Chen, Y. Y. Hsu, C. H. Tsai, F. T. Chen, M.-J. Tsai, and C. H. Lien, “Good Endurance andMemoryWindow for Ti/HfOx Pillar RRAM at 50-nm Scale by Optimal Encapsulation Layer,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 390, 2011.
    [89] B. Govoreanu, G. S. Kar, Y-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, M. Jurczak, “10x10nm2 Hf/HfOx Crossbar Resistive RAM with Excellent Performance, Reliability and Low-Energy Operation,” in IEDM Tech. Dig., 2011, pp. 729.
    [90] M. Janousch, G. Ingmar Meijer, Urs Staub, B. Delley, S. F. Karg, and Björn P. Andreasson, “Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory,” Adv. Mater., vol. 19, pp. 2232, 2007.
    [91] H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, “Ionic doping effect in ZrO2 resistive switching memory,” Appl. Phys. Lett., vol. 96, pp. 123502, 2010.
    [92] A. S. Foster, V. B. Sulimov, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B, vol. 64, pp. 224108, 2001.
    [93] H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, “Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach,” Appl. Phys. Lett., vol. 98, pp. 042105, 2011.
    [94] M. J. Lee, S. Seo, D. C. Kim, S. E. Ahn, D. H. Seo, I. K. Yoo, I. G. Back, D. S. Kim, I. S. Byun, S. H. Kim, I. R. Hwang, J. S. Kim, S. H. Jeon, and B. H. Park, “A Low-Temperature-Grown Oxide Diode as a New Switch Element for High-Density, Nonvolatile Memories,” Adv. Mater., vol. 19, pp. 73, 2007.
    [95] M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Kim, and B. H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater., vol. 19, pp. 3919, 2007.
    [96] W. Y. Park, G. H. Kim, J. Y. Seok, K. M. Kim, S. J. Song, M. H. Lee, and C. S. Hwang, “A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays,” Nanotechnology, vol. 21, pp. 195201, 2010.
    [97] M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-G. Baek and I.-K. Yoo, “2-stack ID-IR Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” in IEDM Tech. Dig., 2007, pp. 771-774.
    [98] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang “TiO2-based metal–insulator–metal selection device for bipolar resistive random access memory cross-point application,” J. Appl. Phys., vol. 109, no. 3, pp. 033712-1-033712-4, 2011.
    [99] J.-J. Huang, Y.-M. Tseng, C.-W. Hsu, and T.-H. Hou, “Bipolar Nonlinear Ni/TiO2/Ni Selector for 1S1R Crossbar Array Applications,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1427, 2011.
    [100]A. Flocke and T. G. Noll, “Fundamental analysis of resistive nanocrossbars for the use in hybrid nano/CMOS-memory,” in Proc. 33rd ESSCIRC, 2007, pp. 328-331.
    [101]J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K. P. Biju, S. Kim, S. Park, and H. Hwang, “Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for highdensity cross-point memory applications,” in IEDM Tech. Dig., 2010, pp. 452-455.
    [102]R. Rosezin, E. Linn, L. Nielen, C. Kügeler, R. Bruchhaus, and R. Waser,“Integrated complementary resistive switches for passive high-density nanocrossbar arrays,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 191-193, 2011.
    [103]S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett., vol. 21, pp. 1450, 1968.
    [104]H. Pagni and S. Sotnik, “Bistable Switching in Electroformed Metal-Insulator-Metal Devices,” Phys. Status Solidi a, vol. 108, pp. 11, 1988.
    [105]G. Dearnaley, A. M. Stoneham, and D. V. Morgans, “Electrical phenomena in amorphous oxide films,” Rep. Prog. Phys., vol. 33, pp. 1129-1191, 1970.
    [106]S. Seo, M.J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, I. R. Hwang, S. H. Kim, I.S. Byun, J.-S. Kim, J. S. Choi, and B.H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, pp. 5655, 2004.
    [107]J. H. Lee, G. H. Kim, Y. B. Ahn, J. W. Park, S. W. Ryu, C. S. Hwang, and H. J. Kim, “Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory, ” Appl. Phys. Lett., vol. 100, pp. 123505, 2012.
    [108]X. Liu, S.M. Sadaf, M. Son, J. Shin, J. Park, J. Lee, S. Park, and H. Hwang, “Diode-less bilayer oxide (WOx-NbOx) device for cross-point resistive memory applications,” Nanotechnology, vol. 22 pp. 475702, 2011.
    [109]B. S. Kang, S.-E. Ahn, M.-J. Lee, G. Sfanovich, K. H. Kim, W. X. Xianyu, C. B. Lee, Y. Park, I. G. Baek, and B. H. Park, “High-Current-Density CuOx/InZnOx Thin-Film Diodes for Cross-Point Memory Applications, ” Adv. Mater., vol. 20, pp. 3066, 2008
    [110]張哲豪,”清華大學博士論文,” 2006.
    [111]T. Suntola and J. Antson, “U. S. Patent No.4058430.” 1977.
    [112]M. Ahonen, M. Pessa, and T. Suntola, “A study of ZnTe films grown on glass substrates using an atomic layer evaporation method,” Thin Solid Films, vol. 65, no. 3, pp. 301-307, Feb. 1980.
    [113]Picosun,“http://www.picosun.com.”[Online].Available: http://www.picosun.com.
    [114]CambridgeNanoTech,“http://www.cambridgenanotech.com/about/contactus.php.” [Online]. Available: http://www.cambridgenanotech.com/about/contactus.php.
    [115]MA-tek, http://www.ma-tek.com/tw.
    [116]M. J. Rozenberg, M. J. Sánchez, R. Weht, C. Acha, F. Gomez-Marlasca, P. Levy, “Mechanism for bipolar resistive switching in transition-metal oxides,” Phys. Rev. B, vol. 81, pp. 115101, 2010.
    [117]Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, “Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides,” Phys. Rev. Lett., vol. 98, pp. 146403, 2007.
    [118]W.-Y. Chang, C.-S. Peng, C.-H. Lin, J.-M. Tsai, F.-C. Chiu, and Y.-L. Chueh, “Polarity of Bipolar Resistive Switching Characteristics in ZnO Memory Films,” J. Electrochem. Soc., vol. 158, pp. H872, 2011.
    [119]Y.-K. Chiou, C.-H. Chang, C.-C. Wang, K.-Y. Lee, T.-B. Wu, R. Kwo, and M. Hong, “Effect of Al Incorporation in the Thermal Stability of Atomic-Layer-Deposited HfO2 for Gate Dielectric Applications,” J. Electrochem. Soc., vol. 154, pp. G99, 2007.
    [120]P. K. Park, E.-S. Cha, and S.-W. Kang, “Interface effect on dielectric constant of HfO2/Al2O3 nanolaminate films deposited by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett., vol. 90, pp. 232906, 2007.
    [121]H. Zhang, B. Gao, S. Yu, L. Lai, L. Zeng, B. Sun, L. Liu, X. Liu, J. Lu, R. Han, and J. Kang, “Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2: A First Principles Study,” International Conference on Simulation of Semiconductor Processes and Devices, 2009, pp. 1.
    [122]D. Ielmini, F. Nardi, and C. Cagli, “Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories,” Nanotechnoogy, vol. 22, pp. 254022, 2011.
    [123]Z. Fang, H.-Y. Yu, W.-J. Liu, Z.-R. Wang, X.-A. Tran, B. Gao, and J.-F. Kang, “Temperature Instability of Resistive Switching on HfOx-Based RRAM Devices,” IEEE Electron Device Lett., vol. 31, pp. 476, 2010.
    [124]B. Gao, J.-F. Kang, H.-W. Zhang, B. Sun, B. Chen, L.-F. Liu, X.-Y. Liu, R.-Q. Han, Y.-Y. Wang, “Oxide-based RRAM: Physical based retention projection,” Solid-State Device Research Conference, 2010, pp. 392
    [125]L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, “MOSFET Devices with Polysilicon on Single-Layer HfO2 High-K Dielectrics,” in IEDM Tech. Dig., 2000, pp. 35.
    [126]D.-Y. Lee, T.-Y. Tseng, “Forming-free resistive switching behaviors in Cr-embedded Ga2O3 thin film memories,” J. Appl. Phys., vol. 110, pp. 114117, 2011.
    [127]H.-Y. Lee, Y.-S. Chen, P.-S. Chen, T.-Y. Wu, F. Chen, C.-C. Wang, P.-J. Tzeng, M.-J. Tsai, and C. Lien, “Low-Power and Nanosecond Switching in Robust Hafnium Oxide Resistive Memory With a Thin Ti Cap,” IEEE Electron Device Lett., vol. 31, pp. 44, 2010.
    [128]W.-Y. Chang, H.-W. Huang, W.-T. Wang, C.-H. Hou, Y.-L. Chueh, and J.-H. He, “High Uniformity of Resistive Switching Characteristics in a Cr/ZnO/Pt Device,” J. Electrochem. Soc., vol. 159, pp. G29, 2012.
    [129]H. K. Yoo, S. B. Lee, J. S. Lee, S. H. Chang, M. J. Yoon, Y. S. Kim, B. S. Kang, M.-J. Lee, C. J. Kim, B. Kahng, and T. W. Noh, “Conversion from unipolar to bipolar resistance switching by inserting Ta2O5 layer in Pt/TaOx/Pt cells,” Appl. Phys. Lett., vol. 98, pp. 183507, 2011.
    [130]S. Yu, X. Guan, and H.-S. Philip Wong, “Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trapassisted-tunneling model,” Appl. Phys. Lett., vol. 99, pp. 063507, 2011.
    [131]Z. Wang, W. G. Zhu, A. Y. Du, L. Wu, Z. Fang, X. A. Tran, W. J. Liu, K. L. Zhang, and H.-Y. Yu, “Highly Uniform, Self-Compliance, and Forming-Free ALD HfO2-Based RRAM With Ge Doping,” IEEE Trans. Electron Devices, vol. 59, pp. 1203, 2012.
    [132]W. J. Zhu, T.-P. Ma, T. Tamagawa, J. Kim, and Y. Di, “Current Transport in Metal/Hafnium Oxide/Silicon Structure,” IEEE Electron Device Lett., vol. 23, pp. 97, 2002.
    [133]H. Wang, Y. Wang, J. Zhang, C. Ye, H. B. Wang, J. Feng, B. Y. Wang, Q. Li, and Y. Jiang, “Interface control and leakage current conduction mechanism in HfO2 film prepared by pulsed laser deposition,” Appl. Phys. Lett., vol. 93, pp. 202904, 2008.
    [134]J. R. Yeargan, H. L. Taylor, “The Poole-Frenkel Effect with Compensation Present,” J. Appl. Phys., vol. 39, pp. 5600, 1968.
    [135]W. R. Harrell, J. Frey, “Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films,” Thin Solid Films, vol. 352, pp. 195, 1999.
    [136]K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, “Atomic Layer Deposition of Hafnium Dioxide Films from Hafnium Tetrakis (ethylmethylamide) and water,” Chem. Vap. Deposition, vol. 8, pp. 199, 2002.
    [137]X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T. E. Seidel, J. T. Barton, D. Pang, and R. G. Gordon, “ALD of Hafnium Oxide Thin Films from Tetrakis„ethylmethylamino…hafnium and Ozone,” J. Electrochem. Soc., vol. 152, pp. G213, 2005.
    [138]T. Harada, I. Ohkubo, K. Tsubouchi, H. Kumigashira, T. Ohnishi, M. Lippmaa, Y. Matsumoto, H. Koinuma, and M. Oshima, “Trap-controlled space-charge-limited current mechanism in resistance switching at Al/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 92, pp. 222113, 2008.
    [139]S. Suzer, S. Sayan, M. M. Banaszak Holl, E. Garfunkel, Z. Hussain, and N. M. Hamdan, “Soft x-ray photoemission studies of Hf oxidation,” J. Vac. Sci. Technol. A, vol. 21, pp. 106, 2003.
    [140]Z.-J. Liu, J.-Y. Gan, and T.-R. Yew, “ZnO-based one diode-one resistor device structure for crossbar memory applications,” Appl. Phys. Lett., vol. 100, pp. 153503, 2012.
    [141]J.-W. Park, J.-W. Park, K. Jung, M.K. Yang, and J.-K. Lee, “Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications,” J. Vac. Sci. Technol. B, vol. 24, pp. 2205, 2006.
    [142]S.H. Chang, J.S. Lee, S.C. Chae, S.B. Lee, C. Liu, B. Kahng, D.-W. Kim, and T.W. Noh, “Occurrence of Both Unipolar Memory and Threshold Resistance Switching in a NiO Film,” Phys. Rev. Lett., vol. 102, pp. 026801, 2009.
    [143]I. Hwang, M.-J. Lee, G.-H. Buh, J. Bae, J. Choi, J.-S. Kim, S. Hong, Y.S. Kim, I.-S. Byun, S.-W. Lee, S.-E. Ahn, B.S. Kang, S.-O. Kang, and B.H. Park, ”Resistive switching transition induced by a voltage pulse in a Pt/NiO/Pt Structure,” Appl. Phys. Lett., vol. 97, pp. 052106, 2010.
    [144]X.A. Tran, H.Y. Yu, Y.C. Yeo, L. Wu, W.J. Liu, Z.R. Wang, Z. Fang, K.L. Pey, X.W. Sun, A.Y. Du, B.Y. Nguyen, and M.F. Li, “A High-Yield HfOx-Based Unipolar Resistive RAM Employing Ni Electrode Compatible With Si-Diode Selector for Crossbar Integration,” IEEE Electron Dev. Lett., vol. 32, pp. 396, 2011.
    [145]Y.Y. Chen, G. Pourtois, C. Adelmann, L. Goux, B. Govoreanu, R. Degreave, M. Jurczak, J.A. Kittl, G. Groeseneken, and D.J. Wouters, “Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device,” Appl. Phys. Lett., vol. 100, pp. 113513, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE