簡易檢索 / 詳目顯示

研究生: 林于瑋
Lin, Yu-Wei
論文名稱: 詹姆斯·韋伯太空望遠鏡發現的遙遠多環芳香烴明亮星系
Polycyclic aromatic hydrocarbon (PAH) luminous galaxies at redshift ~ 1 in JWST ERO data
指導教授: 後藤友嗣
Goto, Tomotsugu
口試委員: 大山楊一
張雨宴
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 46
中文關鍵詞: 星系詹姆斯·韋伯太空望遠鏡
外文關鍵詞: JWST, PAH galaxy
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遙遠的太空中有多少星系被塵埃擋住,一直是一個未解之謎,即有多少塵埃
    星系在最先進的觀測調查中未被檢測到。詹姆斯·韋伯太空望遠鏡使我們能夠探
    測到在中紅外波段具有顯著多環芳香烴(PAH)特徵的微弱紅外星系。多環芳
    香烴在中紅外波長範圍內是恆星形成和塵埃特性的寶貴追蹤者。詹姆斯·韋伯太
    空望遠鏡宇宙演化早期發布科學(CEERS)領域透過中紅外儀器(MIRI)的六
    個光度帶提供了從7.7 到21 微米的波長覆蓋。我們已經確定了由多環芳香烴中紅
    外輻射主導的星系,稱為PAH 星系。從我們的多波段光度目錄中,我們選擇了
    十個顯示出log(S15/S10) > 0.8 高流量比的多環芳香烴星系。光譜能量分佈擬合
    分析表明,這些星系是在z ∼ 1 時總紅外光度為1010 ∼ 1011.5 L⊙ 的恆星形成星
    系。多環芳香烴星系的形態在MIRI 分辨率內並未顯示出明顯的主要融合或相互
    作用的跡象。它們中的大多數位於z ∼ 1 時的星系主序列上。我們的結果表明,
    詹姆斯·韋伯太空望遠鏡可以在紅外線檢測到普通的星形成星系中的多環芳香烴
    輻射,而不僅僅是超亮紅外線星系。
    I


    It has been an unanswered question how many dusty galaxies have been unde-
    tected from the state-of-the-art observational surveys. JWST enables us to detect
    faint IR galaxies that have prominent polycyclic aromatic hydrocarbon (PAH)
    features in the mid-IR wavelengths. PAH is a valuable tracer of star formation
    and dust properties in the mid-infrared wavelength. The JWST Cosmic Evolution
    Early Release Science (CEERS) fields provide us with wavelength coverage from
    7.7 to 21 μm using six photometric bands of the mid-infrared instrument (MIRI).
    We have identified galaxies dominated by mid-IR emission from PAHs, termed
    PAH galaxies. From our multi-band photometry catalogue, we selected ten PAH
    galaxies displaying high flux ratios of log(S15/S10) > 0.8. The SED fitting analysis
    indicates that these galaxies are star-forming galaxies with total IR luminosities
    of 1010 ∼ 1011.5 L⊙ at z ∼ 1. The morphology of PAH galaxies does not show
    any clear signatures of major merging or interaction within the MIRI resolution.
    The majority of them are on the star-formation main sequence at z ∼ 1. Our re-
    sult demonstrates that JWST can detect PAH emissions from normal star-forming
    galaxies at z ∼ 1, in addition to LIRGs/ULIRGs.
    II

    1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Observational Challenges and Opportunities . . . . . . . . . . . . . 2 1.3 Objectives and Structure of the Thesis . . . . . . . . . . . . . . . . 2 2 Data and Methods 4 2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 JWST Observations . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Cross-Matching with CANDELS-EGS . . . . . . . . . . . . 4 2.2 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 CIGALE SED Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 5 IV 3 Results 11 4 Discussion 17 4.1 Colour Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Obscured AGN or Compact obscured nuclei . . . . . . . . . . . . . 19 4.3 The Emission Lines Contribution for Excess of PAH 7.7 μm . . . . 19 4.4 Star Formation Main Sequence . . . . . . . . . . . . . . . . . . . . 21 4.5 PAH luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Conclusion 27 6 Appendix 29 6.1 SED result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Bibliography 42 V

    Armus L., Charmandaris V., Soifer B. T., 2020, Nature Astronomy, 4, 467
    Ashby M. L. N., et al., 2015, The Astrophysical Journal Supplement Series, 218,
    33
    Bielby, R. et al., 2012, A&A, 545, A23
    Boquien M., Burgarella D., Roehlly Y., Buat V., Ciesla L., Corre D., Inoue A. K.,
    Salas H., 2019, A&A, 622, A103
    Brammer G. B., et al., 2012, The Astrophysical Journal Supplement Series, 200,
    13
    Bruzual G., Charlot S., 2003, Monthly Notices of the Royal Astronomical Society,
    344, 1000
    Bua
    t V., Boquien M., Ma lek K., Corre D., Salas H., Roehlly Y., Shirley R., Efstathiou
    A., 2018, A&A, 619, A135
    Candian A., Zhen J., Tielens A. G. G. M., 2018, Physics Today, 71, 38
    Charlot S., Fall S. M., 2000, The Astrophysical Journal, 539, 718
    Chastenet J., et al., 2023a, The Astrophysical Journal Letters, 944, L11
    Chastenet J., et al., 2023b, The Astrophysical Journal Letters, 944, L12
    Desai V., et al., 2007, The Astrophysical Journal, 669, 810
    Draine B. T., et al., 2014, The Astrophysical Journal, 780, 172
    Elbaz D., Le Floc’h E., Dole H., Marcillac D., 2005, A&A, 434, L1
    Elbaz D., et al., 2007, A&A, 468, 33
    Elbaz D., et al., 2011, A&A, 533, A119
    Falstad N., et al., 2021, A&A, 649, A105
    Finkelstein S. L., et al., 2017, The Cosmic Evolution Early Release Science
    (CEERS) Survey, JWST Proposal ID 1345. Cycle 0 Early Release Science
    Fritz J., Franceschini A., Hatziminaoglou E., 2006, Monthly Notices of the Royal
    Astronomical Society, 366, 767
    Garc ́ıa-Bernete I., Rigopoulou D., Alonso-Herrero A., Pereira-Santaella M., Roche
    P. F., Kerkeni B., 2022a, Monthly Notices of the Royal Astronomical Society,
    509, 4256
    Garc ́ıa-Bernete I., Rigopoulou D., Aalto S., Spoon H. W. W., Hern ́an-Caballero
    A., Efstathiou A., Roche P. F., K ̈onig S., 2022b, A&A, 663, A46
    Garc ́ıa-Bernete I., et al., 2022c, A&A, 666, L5
    Gardner J. P., et al., 2006, Space Science Reviews, 123, 485
    Gardner J. P., et al., 2023, Publications of the Astronomical Society of the Pacific,
    135, 068001
    Gordon K. D., Clayton G. C., Decleir M., Fitzpatrick E. L., Massa D., Misselt
    K. A., Tollerud E. J., 2023, The Astrophysical Journal, 950, 86
    Goto T., et al., 2011, Monthly Notices of the Royal Astronomical Society, 410, 573
    Gwyn S. D. J., 2012, The Astronomical Journal, 143, 38
    43
    Houck J. R., Weedman D. W., Floc’h E. L., Hao L., 2007, The Astrophysical
    Journal, 671, 323
    Huang J. S., et al., 2023, The Astrophysical Journal, 949, 83
    Hummer D. G., Storey P. J., 1987, Monthly Notices of the Royal Astronomical
    Society, 224, 801
    Kalirai J., 2018, Contemporary Physics, 59, 251
    Kennicutt Robert C. J., 1998, Annual Rev. Astron. Astrophys., 36, 189
    Kim S. J., et al., 2019, Publications of the Astronomical Society of Japan, 71, 11
    Kirkpatrick A., Pope A., Sajina A., Roebuck E., Yan L., Armus L., D ́ıaz-Santos
    T., Stierwalt S., 2015, The Astrophysical Journal, 814, 9
    Kirkpatrick A., et al., 2017, The Astrophysical Journal, 849, 111
    Koekemoer A. M., et al., 2011, The Astrophysical Journal Supplement Series, 197,
    36
    Kov ́acs T. O., Burgarella D., Kaneda H., Moln ́ar D. C., Oyabu S., Pinter S., Toth
    L. V., 2019, Publications of the Astronomical Society of Japan, 71, 27
    Kwok S., 2022, Astrophysics and Space Science, 367, 16
    Li A., 2020, Nature Astronomy, 4, 339
    Lo Faro B., Buat V., Roehlly Y., Alvarez-Marquez J., Burgarella D., Silva L.,
    Efstathiou A., 2017, Monthly Notices of the Royal Astronomical Society, 472,
    1372
    Malek, K. et al., 2018, A&A, 620, A50
    44
    McElwain M. W., et al., 2023, Publications of the Astronomical Society of the
    Pacific, 135, 058001
    Pearson, W. J. et al., 2018, A&A, 615, A146
    Peeters E., Tielens A. G. G. M., Allamandola L. J., Bauschlicher C. W., Boogert
    A. C. A., Hayward T. L., Hudgins D. M., Sandford S. A., 2003, in Witt A. N.,
    ed., Astrophysics of Dust. p. 42
    Peeters E., Mattioda A. L., Kemper F., Hudgins D. M., Allamandola L. J., 2006,
    in Armus L., Reach W. T., eds, Astronomical Society of the Pacific Conference
    Series Vol. 357, The Spitzer Space Telescope: New Views of the Cosmos. p. 95
    (arXiv:astro-ph/0507008), doi:10.48550/arXiv.astro-ph/0507008
    Polletta M., et al., 2007, The Astrophysical Journal, 663, 81
    Pope A., et al., 2008, The Astrophysical Journal, 675, 1171
    Popesso P., et al., 2022, Monthly Notices of the Royal Astronomical Society,
    Rich J., et al., 2023, The Astrophysical Journal Letters, 944, L50
    Riechers D. A., et al., 2014, The Astrophysical Journal, 786, 31
    Rieke G. H., et al., 2015, Publications of the Astronomical Society of the Pacific,
    127, 584
    Rigopoulou D., Spoon H. W. W., Genzel R., Lutz D., Moorwood A. F. M., Tran
    Q. D., 1999, The Astronomical Journal, 118, 2625
    Salpeter E. E., 1955, The Astrophysical Journal, 121, 161
    Santos D. J. D., et al., 2021, Monthly Notices of the Royal Astronomical Society,
    507, 3070
    45
    Shipley H. V., Papovich C., Rieke G. H., Brown M. J. I., Moustakas J., 2016, The
    Astrophysical Journal, 818, 60
    Skelton R. E., et al., 2014, The Astrophysical Journal Supplement Series, 214, 24
    Spilker J. S., et al., 2023, Nature, 618, 708
    Stefanon M., et al., 2017, The Astrophysical Journal Supplement Series, 229, 32
    Takagi T., et al., 2010, A&A, 514, A5
    Takagi T., Matsuhara H., Wada T., Ohyama Y., 2011, Proceedings of the Inter-
    national Astronomical Union, 7, 456–459
    Tielens A. G. G. M., 2008, Annual Rev. Astron. Astrophys., 46, 289
    Wang T.-W., et al., 2020, Monthly Notices of the Royal Astronomical Society,
    499, 4068
    Weedman D. W., Houck J. R., 2008, The Astrophysical Journal, 686, 127
    Whitaker K. E., van Dokkum P. G., Brammer G., Franx M., 2012, The Astro-
    physical Journal Letters, 754, L29
    Wright G. S., et al., 2023, Publications of the Astronomical Society of the Pacific,
    135, 048003
    Wu C. K. W., et al., 2023, Monthly Notices of the Royal Astronomical Society,
    523, 5187
    46

    QR CODE