研究生: |
曾天生 Tseng, Tien-Sheng |
---|---|
論文名稱: |
果蠅 Crammer 蛋白之結構功能與特定胺基酸註解分析 Structure, Function and Residue-Specific Annotation of Drosophila melanogaster Crammer |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
陳金榜
Chen, Chin-Pan 張大慈 Chang, Dah-Tsyr 蘇士哲 Sue, Shih-Che 徐尚德 Hsu, Shang-Te Danny |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 133 |
中文關鍵詞: | 果蠅類第二型細胞毒性T淋巴抗原 、半胱胺酸蛋白脢 、長期記憶 、蛋白質結構折疊 、特定點突變 、二聚體 、支鍊鹽橋 |
外文關鍵詞: | Crammer, Cathepsin, Long-term memory, Propeptide-like protease inhibitor, Molten globule, Alanine scanning, Hydrophobic core, Human cathepsin, Molten globule-to-ordered structure transition of crammer propeptide-like cysteine, Protease inhibitor, Prosegment binding loop (PBL) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
果蠅類第二型細胞毒性T淋巴抗原(CTLA-2-like),又名Crammer,為一79個胺基酸蛋白質(分子量約9.5 kDa)。其蛋白質序列與某些半胱胺酸蛋白脢(Cathepsins)的前段序列(proregions)有高度相似性,意謂Crammer聚有與半胱胺酸蛋白脢的前段序列相似功能(抑制蛋白脢活性)。相關文獻指出Crammer是建立果蠅長期記憶的主要因子之一,可能是藉由其調控Cathepsins的活性來控制長期記憶的形成,但詳細的機制仍然未知。在本研究中,藉由利用生物化學以及生物物理的方法來探討Crammer和Cathepsins之間的相互關係,更利用特定點突變的方法研究結構上特定胺基酸對於Crammer抑制半胱胺酸蛋白脢的重要性、結構穩定性、以及對於整個Crammer蛋白質結構折疊上的影響。實驗結果顯示,Crammer在不同的pH環境下聚有單體與二聚體的狀態。在中性與偏鹼性pH下,Crammer以一對分子間雙硫鍵所構成的二聚體存在 然而,在酸性環境下,則是以單體的狀態存在。活性抑制分析的結果顯示,單體Crammer能抑制果蠅的Cathepsins,而二聚體則無抑制的活性。此外,Crammer在酸性的環境下是以熔球體(molten globule)的狀態存在,此環境類似於Crammer可能所處的溶脢體 (lysosome)的生理環境。然而,當與Cathepsin L結合後,Crammer的蛋白質構型會從熔球體轉變成一個穩定且摺疊完整的單體結構。在核磁共振光譜結果指出,突變種C72S於pH 6.0下的HSQC圖譜高度相似於與Cathepsin L形成複合體Crammer的HSQC圖譜。因此,我們解出C72S的結構,也是第一個類前段序列蛋白脢抑制劑(propeptide-like protease inhibitor)的蛋白質結構。另外,特定點突變研究結果顯示具,將疏水核心區(hydrophobic cores)的芳香族胺基酸(W9, Y12, F16, Y20, Y32, W53)以及構成支鍊鹽橋(salt-bridges)的帶電性胺基酸 (E8, R28, R29, E67)以丙胺酸取代後,會大幅降低Crammer抑制果蠅 Cathepsin B的活性。同時,圓二色光譜、自身螢光分析(intrinsic fluorescence)與核磁共振的結果指出,移除芳香環以及帶電胺基酸的側鏈,會明顯影響pH值依賴性螺旋的形成(pH-dependent helix formation)、降低熱穩定性並且破壞Crammer結構的摺疊(molten globule-to-ordered structure transition)。此外,我們也發現W53在Crammer與Cathepsin B結合的交互作用上扮演了重要的角色,及R28與E67所形成的鹽橋對於
螺旋確切地結合在Cathepsin B活化位有重要的貢獻。
Drosophila melanogaster crammer is a novel cathepsin inhibitor that is involved in long-term memory (LTM) formation. The mechanism by which the inhibitory activity is regulated remains unclear. Here we have shown that at neutral pH, crammer is predominantly dimeric in vitro as a result of disulfide bond formation, and is monomeric at acidic pH. Our inhibition assay shows that monomeric crammer is a strong competitive inhibitor of cathepsin L. Crammer is a monomeric molten globule in acidic solution, upon binding to cathepsin L; however, crammer undergoes a molten globule-to-ordered structural transition. Using high-resolution NMR spectroscopy, we have shown that the C72S variant renders crammer monomeric at pH 6.0 and that the structure of the C72S variant highly resembles that of wild-type crammer in complex with cathepsin L at pH 4.0. We have determined the first solution structure of a propeptide-like protease inhibitor in its active form and examined in detail using a variety of spectroscopic methods the folding properties of crammer in order to delineate its biomolecular recognition of cathepsin. In addition, alanine substitution for the aromatic residues W9, Y12, F16, Y20, Y32, and W53 within the hydrophobic cores, and charged residues E8, R28, R29, and E67 in the salt bridges considerably decrease the ability of crammer to inhibit Drosophila cathepsin B (CTSB). Far-UV circular dichroism (CD), intrinsic fluorescence and nuclear magnetic resonance (NMR) spectroscopies show that the removal of most the aromatic and charged side-chains substantially reduce the thermostability, alter pH-dependent helix formation, and disrupt the molten globule-to-ordered structure transition. Molecular modeling indicates that W53 is essential for the interaction between crammer and CTSB; the salt bridge R28-E67 is critical for the appropriate alignment of the -helix 4 towards the CTSB active cleft. Alanine scanning provides detailed residue-specific dissection of folding transition and functional contributions of the hydrophobic cores and salt bridges of crammer, and these insights could serve as a template for further development of therapeutic inhibitors against cathepsins.
Reference
1. Kimble, G. A., Leonard, T. B., 3rd, and Perlmuter, L. C. (1968) Journal of experimental psychology 77, 652-660
2. Pavlov, I. P. (1927)
3. Qunin, W. G. a. G., R. J. (1984) Annun Rev Neurosci 7, 67-93
4. Tully, T. (1987) Trends in neurosciences 10, 330-334
5. Davis, R. L. (1996) Physiological reviews 76, 299-317
6. Waddell, S., and Quinn, W. G. (2001) Annual review of neuroscience 24, 1283-1309
7. Quinn, W. G., Harris, W. A., and Benzer, S. (1974) Proceedings of the National Academy of Sciences of the United States of America 71, 708-712
8. Tully, T., and Quinn, W. G. (1985) Journal of comparative physiology. A, Sensory, neural, and behavioral physiology 157, 263-277
9. Tully, T., Preat, T., Boynton, S. C., and Del Vecchio, M. (1994) Cell 79, 35-47
10. DeZazzo, J., and Tully, T. (1995) Trends in neurosciences 18, 212-218
11. Davis, R. L. (2005) Annu Rev Neurosci 28, 275-302
12. Keene, A. C., and Waddell, S. (2007) Nat Rev Neurosci 8, 341-354
13. Comas, D., Petit, F., and Preat, T. (2004) Nature 430, 460-463
14. Krashes, M. J., and Waddell, S. (2008) J Neurosci 28, 3103-3113
15. Jerala, R., Zerovnik, E., Kidric, J., and Turk, V. (1998) J Biol Chem 273, 11498-11504
16. Denizot, F., Brunet, J. F., Roustan, P., Harper, K., Suzan, M., Luciani, M. F., Mattei, M. G., and Golstein, P. (1989) Eur J Immunol 19, 631-635
17. Delaria, K., Fiorentino, L., Wallace, L., Tamburini, P., Brownell, E., and Muller, D. (1994) J Biol Chem 269, 25172-25177
18. Kurata, M., Hirata, M., Watabe, S., Miyake, M., Takahashi, S. Y., and Yamamoto, Y. (2003) Protein Expr Purif 32, 119-125
19. Yamamoto, Y., Watabe, S., Kageyama, T., and Takahashi, S. Y. (1999) FEBS Lett 448, 257-260
20. Yamamoto, Y., Watabe, S., Kageyama, T., and Takahashi, S. Y. (1999) Arch Insect Biochem Physiol 42, 119-129
21. Kurata, M., Yamamoto, Y., Watabe, S., Makino, Y., Ogawa, K., and Takahashi, S. Y. (2001) J Biochem 130, 857-863
22. Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L., Jr., White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A., McKenna, M. P., Chant, J., and Rothberg, J. M. (2003) Science 302, 1727-1736
23. Deshapriya, R. M., Takeuchi, A., Shirao, K., Isa, K., Watabe, S., Murakami, R., Tsujimura, H., and Yamamoto, Y. (2007) Zoolog Sci 24, 21-30
24. Hanewinkel, H., Glossl, J., and Kresse, H. (1987) J Biol Chem 262, 12351-12355
25. Tao, K., Stearns, N. A., Dong, J., Wu, Q. L., and Sahagian, G. G. (1994) Arch Biochem Biophys 311, 19-27
26. Groves, M. R., Coulombe, R., Jenkins, J., and Cygler, M. (1998) Proteins 32, 504-514
27. Nishimura, Y., Kawabata, T., and Kato, K. (1988) Arch Biochem Biophys 261, 64-71
28. Rowan, A. D., Mason, P., Mach, L., and Mort, J. S. (1992) J Biol Chem 267, 15993-15999
29. Khan, A. R., and James, M. N. (1998) Protein Sci 7, 815-836
30. Vernet, T., Berti, P. J., de Montigny, C., Musil, R., Tessier, D. C., Menard, R., Magny, M. C., Storer, A. C., and Thomas, D. Y. (1995) J Biol Chem 270, 10838-10846
31. McIntyre, G. F., Godbold, G. D., and Erickson, A. H. (1994) J Biol Chem 269, 567-572
32. Wiederanders, B., Kaulmann, G., and Schilling, K. (2003) Curr Protein Pept Sci 4, 309-326
33. Rawlings, N. D., and Barrett, A. J. (1994) Methods in enzymology 244, 461-486
34. Berti, P. J., and Storer, A. C. (1995) Journal of molecular biology 246, 273-283
35. Buhling, F., Fengler, A., Brandt, W., Welte, T., Ansorge, S., and Nagler, D. K. (2000) Adv Exp Med Biol 477, 241-254
36. Gelb, B. D., Shi, G. P., Chapman, H. A., and Desnick, R. J. (1996) Science 273, 1236-1238
37. Inui, T., Ishibashi, O., Inaoka, T., Origane, Y., Kumegawa, M., Kokubo, T., and Yamamura, T. (1997) J Biol Chem 272, 8109-8112
38. Mort, J. S., Recklies, A. D., and Poole, A. R. (1984) Arthritis Rheum 27, 509-515
39. Reiser, J., Adair, B., and Reinheckel, T. (2010) J Clin Invest 120, 3421-3431
40. Zhang, L., Sheng, R., and Qin, Z. (2009) Acta biochimica et biophysica Sinica 41, 437-445
41. Mantle, D., Falkous, G., Ishiura, S., Perry, R. H., and Perry, E. K. (1995) Journal of the neurological sciences 131, 65-70
42. Ii, K., Ito, H., Kominami, E., and Hirano, A. (1993) Virchows Archiv. A, Pathological anatomy and histopathology 423, 185-194
43. Turk, B. (2006) Nat Rev Drug Discov 5, 785-799
44. Jilkova, A., Rezacova, P., Lepsik, M., Horn, M., Vachova, J., Fanfrlik, J., Brynda, J., McKerrow, J. H., Caffrey, C. R., and Mares, M. (2011) J Biol Chem 286, 35770-35781
45. Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., and Turk, B. (2007) Curr Pharm Des 13, 387-403
46. Thompson, S. K., Halbert, S. M., DesJarlais, R. L., Tomaszek, T. A., Levy, M. A., Tew, D. G., Ijames, C. F., and Veber, D. F. (1999) Bioorg Med Chem 7, 599-605
47. Katunuma, N., Tsuge, H., Nukatsuka, M., Asao, T., and Fukushima, M. (2002) Arch Biochem Biophys 397, 305-311
48. Turk, D., and Guncar, G. (2003) Acta crystallographica. Section D, Biological crystallography 59, 203-213
49. Ahn, N. G., and Resing, K. A. (2005) Science 308, 1266-1267
50. Markt, P., McGoohan, C., Walker, B., Kirchmair, J., Feldmann, C., De Martino, G., Spitzer, G., Distinto, S., Schuster, D., Wolber, G., Laggner, C., and Langer, T. (2008) J Chem Inf Model 48, 1693-1705
51. Ravikumar, M., Pavan, S., Bairy, S., Pramod, A. B., Sumakanth, M., Kishore, M., and Sumithra, T. (2008) Chem Biol Drug Des 72, 79-90
52. Huo, S., Wang, J., Cieplak, P., Kollman, P. A., and Kuntz, I. D. (2002) J Med Chem 45, 1412-1419
53. Hook, V. Y. (2006) Biological chemistry 387, 1429-1439
54. Nakanishi, H., Tominaga, K., Amano, T., Hirotsu, I., Inoue, T., and Yamamoto, K. (1994) Experimental neurology 126, 119-128
55. Haque, A., Banik, N. L., and Ray, S. K. (2008) CNS & neurological disorders drug targets 7, 270-277
56. Funkelstein, L., Beinfeld, M., Minokadeh, A., Zadina, J., and Hook, V. (2010) Neuropeptides 44, 457-466
57. Yasothornsrikul, S., Greenbaum, D., Medzihradszky, K. F., Toneff, T., Bundey, R., Miller, R., Schilling, B., Petermann, I., Dehnert, J., Logvinova, A., Goldsmith, P., Neveu, J. M., Lane, W. S., Gibson, B., Reinheckel, T., Peters, C., Bogyo, M., and Hook, V. (2003) Proceedings of the National Academy of Sciences of the United States of America 100, 9590-9595
58. Funkelstein, L., Toneff, T., Hwang, S. R., Reinheckel, T., Peters, C., and Hook, V. (2008) Journal of neurochemistry 106, 384-391
59. Funkelstein, L., Toneff, T., Mosier, C., Hwang, S. R., Beuschlein, F., Lichtenauer, U. D., Reinheckel, T., Peters, C., and Hook, V. (2008) The Journal of biological chemistry 283, 35652-35659
60. Hook, V., Funkelstein, L., Lu, D., Bark, S., Wegrzyn, J., and Hwang, S. R. (2008) Annual review of pharmacology and toxicology 48, 393-423
61. Beinfeld, M. C., Funkelstein, L., Foulon, T., Cadel, S., Kitagawa, K., Toneff, T., Reinheckel, T., Peters, C., and Hook, V. (2009) Peptides 30, 1882-1891
62. Biswas, N., Rodriguez-Flores, J. L., Courel, M., Gayen, J. R., Vaingankar, S. M., Mahata, M., Torpey, J. W., Taupenot, L., O'Connor, D. T., and Mahata, S. K. (2009) Endocrinology 150, 3547-3557
63. Hook, V. Y., Toneff, T., Aaron, W., Yasothornsrikul, S., Bundey, R., and Reisine, T. (2002) Journal of neurochemistry 81, 237-256
64. Hook, V., Toneff, T., Bogyo, M., Greenbaum, D., Medzihradszky, K. F., Neveu, J., Lane, W., Hook, G., and Reisine, T. (2005) Biological chemistry 386, 931-940
65. Hook, G., Hook, V. Y., and Kindy, M. (2007) Biological chemistry 388, 979-983
66. Hook, V., Kindy, M., and Hook, G. (2007) Biological chemistry 388, 247-252
67. Hook, V. Y., Kindy, M., and Hook, G. (2008) The Journal of biological chemistry 283, 7745-7753
68. Hook, V. Y., Kindy, M., Reinheckel, T., Peters, C., and Hook, G. (2009) Biochemical and biophysical research communications 386, 284-288
69. Hook, V., Hook, G., and Kindy, M. (2010) Biological chemistry 391, 861-872
70. Hook, V., Funkelstein, L., Wegrzyn, J., Bark, S., Kindy, M., and Hook, G. (2012) Biochimica et biophysica acta 1824, 89-104
71. Wiederanders, B. (2000) Advances in experimental medicine and biology 477, 261-270
72. Deshapriya, R. M., Yuhashi, S., Usui, M., Kageyama, T., and Yamamoto, Y. (2010) J Biochem 147, 393-404
73. Qiao, L., Hamamichi, S., Caldwell, K. A., Caldwell, G. A., Yacoubian, T. A., Wilson, S., Xie, Z. L., Speake, L. D., Parks, R., Crabtree, D., Liang, Q., Crimmins, S., Schneider, L., Uchiyama, Y., Iwatsubo, T., Zhou, Y., Peng, L., Lu, Y., Standaert, D. G., Walls, K. C., Shacka, J. J., Roth, K. A., and Zhang, J. (2008) Mol Brain 1, 17
74. Sevenich, L., Pennacchio, L. A., Peters, C., and Reinheckel, T. (2006) Biol Chem 387, 885-891
75. Tseng, T. S., Cheng, C. S., Chen, D. J., Shih, M. F., Liu, Y. N., Hsu, S. T., and Lyu, P. C. (2011) The Biochemical journal
76. Ohgushi, M., and Wada, A. (1983) FEBS letters 164, 21-24
77. Kuroda, Y., Kidokoro, S., and Wada, A. (1992) Journal of molecular biology 223, 1139-1153
78. Bieri O, K. T. (2000) Mechanisms in Protein Folding (2nd ed.). Oxford, UK: Oxford University Press. ISBN 0-19-963788-1.
79. Pande, V. S., and Rokhsar, D. S. (1998) Proceedings of the National Academy of Sciences of the United States of America 95, 1490-1494
80. Fink, A. L. (2001) ENCYCLOPEDIA OF LIFE SCIENCES © 2001, John Wiley & Sons, Ltd. www.els.net, 1-6
81. Johnson, W. C., Jr. (1985) Methods of biochemical analysis 31, 61-163
82. Woody, R. W. (1995) Methods in enzymology 246, 34-71
83. Woody, R. W., Sugeta, H., and Kodama, T. S. (1996) Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 41, 56-69
84. Ramos, D. H. A. C. a. C. H. I. (2009) African Journal of Biochemistry Research 3, 164-173
85. Sprecher, C. A., Baase, W. A., and Johnson, W. C., Jr. (1979) Biopolymers 18, 1009-1019
86. Woody, R. W., and Koslowski, A. (2002) Biophysical chemistry 101-102, 535-551
87. Weber, G. (1960) The Biochemical journal 75, 335-345
88. Vanderkooi, J. M., Angiolillo, P. J., and Laberge, M. (1997) Methods in enzymology 278, 71-94
89. Lacourciere, K. A., Stivers, J. T., and Marino, J. P. (2000) Biochemistry 39, 5630-5641
90. Lakowicz, J. R. (2010) Principles of Fluorescence Spectroscopy, 529-575
91. Engelborghs, Y. (2001) Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 57, 2255-2270
92. Ladokhin, A. S., Jayasinghe, S., and White, S. H. (2000) Analytical biochemistry 285, 235-245
93. Burshtein, E. A. (1961) Biofizika 6, 753-763
94. Vladimirov Iu, A., and Perrase, N. I. (1966) Biofizika 11, 578-583
95. Permiakov, E. A., and Deikus, G. (1995) Molekuliarnaia biologiia 29, 339-344
96. Kuznetsova, I. M., and Turoverov, K. K. (1983) Molekuliarnaia biologiia 17, 741-754
97. Lakowicz, J. R., Maliwal, B. P., Cherek, H., and Balter, A. (1983) Biochemistry 22, 1741-1752
98. Lakowicz, J. R., and Maliwal, B. P. (1983) The Journal of biological chemistry 258, 4794-4801
99. Turoverov, K. K., and Kuznetsova, I. M. (1983) Molekuliarnaia biologiia 17, 468-474
100. (2010) BioWave 12, 1-12
101. Stryer, L. (1965) Journal of molecular biology 13, 482-495
102. Srimathi, T., Kumar, T. K., Kathir, K. M., Chi, Y. H., Srisailam, S., Lin, W. Y., Chiu, I. M., and Yu, C. (2003) Biophysical journal 85, 459-472
103. Sehorn, M. G., Slepenkov, S. V., and Witt, S. N. (2002) Biochemistry 41, 8499-8507
104. Smoot, A. L., Panda, M., Brazil, B. T., Buckle, A. M., Fersht, A. R., and Horowitz, P. M. (2001) Biochemistry 40, 4484-4492
105. Roque, A., Ponte, I., and Suau, P. (2007) Biophysical journal 93, 2170-2177
106. Berg J., T. J. a. S. L. (2002) Freeman and Company, ISBN 0-7167-4955-7166
107. Dixon, M. (1953) The Biochemical journal 55, 170-171
108. Holdgate, G. A. (2001) BioTechniques 31, 164-166, 168, 170 passim
109. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Cheng, Z. M., and Li, Y. (2004) Nucleic Acids Res 32, e98
110. Liu, Y. N., Lai, Y. T., Chou, W. I., Chang, M. D., and Lyu, P. C. (2007) The Biochemical journal 403, 21-30
111. Begg, G. E., and Speicher, D. W. (1999) Journal of biomolecular techniques : JBT 10, 17-20
112. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Analytical biochemistry 150, 76-85
113. Kaulmann, G., Palm, G. J., Schilling, K., Hilgenfeld, R., and Wiederanders, B. (2003) Acta crystallographica. Section D, Biological crystallography 59, 1243-1245
114. Barrett, A. J. (1980) The Biochemical journal 187, 909-912
115. Barrett, A. J., and Kirschke, H. (1981) Methods in enzymology 80 Pt C, 535-561
116. Barrett, A. J., Kembhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. G., Tamai, M., and Hanada, K. (1982) Biochem J 201, 189-198
117. Qian, F., Bajkowski, A. S., Steiner, D. F., Chan, S. J., and Frankfater, A. (1989) Cancer Res 49, 4870-4875
118. Bohm, G., Muhr, R., and Jaenicke, R. (1992) Protein Eng 5, 191-195
119. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) J Biomol NMR 6, 277-293
120. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Prog Nucl Mag Res Sp 34, 93-158
121. Hsu, S. T., Cabrita, L. D., Christodoulou, J., and Dobson, C. M. (2009) Biomol NMR Assign 3, 29-31
122. Davies, L. A., Keeler, J., Laue, E. D., and Moskau, D. (1992b) J Magn Reson 98, 207-216
123. Kay, L. E., Keifer, P., and Saarinen, T. (1992b) J Am Chem Soc 114, 10663-10665
124. Palmer, G. A., Cavanagh, J., Wright, P. E., and Rance, M. (1991b) J Magn Reson, 93
125. Piotto, M., Saudek , V., and Sklenar, V. (1992) J Biomol NMR 2, 661-665
126. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Progress in Nuclear Magnetic Resonance Spectroscopy 34, 93–158
127. Yamazaki T, F.-K. J., Kay LE (1993) J. Am. Chem. Soc. 115, , 11054-11055
128. Marsh, J. A., Singh, V. K., Jia, Z., and Forman-Kay, J. D. (2006) Protein Sci 15, 2795-2804
129. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Biochemistry 28, 8972-8979
130. Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) J Biomol NMR 44, 213-223
131. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr D Biol Crystallogr 54, 905-921
132. Laskowski, R. A., Macarthur, M. W., Moss, D. S., and Thornton, J. M. (1993) Journal of Applied Crystallography 26, 283-291
133. Shah, P. P., Myers, M. C., Beavers, M. P., Purvis, J. E., Jing, H., Grieser, H. J., Sharlow, E. R., Napper, A. D., Huryn, D. M., Cooperman, B. S., Smith, A. B., 3rd, and Diamond, S. L. (2008) Mol Pharmacol 74, 34-41
134. Myers, M. C., Shah, P. P., Diamond, S. L., Huryn, D. M., and Smith, A. B., 3rd. (2008) Bioorg Med Chem Lett 18, 210-214
135. Cheng, C. S., Chen, M. N., Lai, Y. T., Chen, T., Lin, K. F., Liu, Y. J., and Lyu, P. C. (2008) Proteins 70, 695-706
136. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Annual review of biophysics and biomolecular structure 29, 291-325
137. Sali, A., and Blundell, T. L. (1993) Journal of molecular biology 234, 779-815
138. Morris, A. L., MacArthur, M. W., Hutchinson, E. G., and Thornton, J. M. (1992) Proteins 12, 345-364
139. Chen, R., Li, L., and Weng, Z. (2003) Proteins 52, 80-87
140. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H. J. (2005) Nucleic acids research 33, W363-367
141. Smith, G. R., and Sternberg, M. J. (2002) Current opinion in structural biology 12, 28-35
142. WL, D. (2002)
143. Ellman, G. L. (1959) Arch Biochem Biophys 82, 70-77
144. Riddles, P. W., Blakeley, R. L., and Zerner, B. (1983) Methods Enzymol 91, 49-60
145. Schulman, B. A., Kim, P. S., Dobson, C. M., and Redfield, C. (1997) Nat Struct Biol 4, 630-634
146. Lyu, P. C., Gans, P. J., and Kallenbach, N. R. (1992) J Mol Biol 223, 343-350
147. Chevigne, A., Dumez, M. E., Dumoulin, M., Matagne, A., Jacquet, A., and Galleni, M. (2010) Biochim Biophys Acta 1800, 937-945
148. Christensen, H., and Pain, R. H. (1991) Eur Biophys J 19, 221-229
149. Baker, D., Sohl, J. L., and Agard, D. A. (1992) Nature 356, 263-265
150. Coulombe, R., Grochulski, P., Sivaraman, J., Menard, R., Mort, J. S., and Cygler, M. (1996) The EMBO journal 15, 5492-5503
151. Fox, T., de Miguel, E., Mort, J. S., and Storer, A. C. (1992) Biochemistry-Us 31, 12571-12576
152. Rzychon, M., Chmiel, D., and Stec-Niemczyk, J. (2004) Acta biochimica Polonica 51, 861-873
153. Podobnik, M., Kuhelj, R., Turk, V., and Turk, D. (1997) Journal of molecular biology 271, 774-788
154. Kaulmann, G., Palm, G. J., Schilling, K., Hilgenfeld, R., and Wiederanders, B. (2006) Protein Sci 15, 2619-2629
155. Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T., and Olsen, B. R. (2002) Proc Natl Acad Sci U S A 99, 7883-7888
156. Mason, R. W., Gal, S., and Gottesman, M. M. (1987) Biochem J 248, 449-454
157. Gutierrez-Gonzalez, L. H., Rojo-Dominguez, A., Cabrera-Gonzalez, N. E., Perez-Montfort, R., and Padilla-Zuniga, A. J. (2006) Archives of biochemistry and biophysics 446, 151-160
158. Roche, L., Tort, J., and Dalton, J. P. (1999) Mol Biochem Parasitol 98, 271-277
159. Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C. (1994) Nature 371, 37-43
160. Tseng, T. S., Cheng, C. S., Chen, D. J., Shih, M. F., Liu, Y. N., Hsu, S. T., and Lyu, P. C. (2012) The Biochemical journal 442, 563-572
161. Tina, K. G., Bhadra, R., and Srinivasan, N. (2007) Nucleic Acids Res 35, W473-476
162. LaLonde, J. M., Zhao, B., Janson, C. A., D'Alessio, K. J., McQueney, M. S., Orsini, M. J., Debouck, C. M., and Smith, W. W. (1999) Biochemistry 38, 862-869
163. Chen, Y., Plouffe, C., Menard, R., and Storer, A. C. (1996) FEBS Lett 393, 24-26
164. Sivaraman, J., Lalumiere, M., Menard, R., and Cygler, M. (1999) Protein Sci 8, 283-290
165. Notredame, C., Higgins, D. G., and Heringa, J. (2000) Journal of molecular biology 302, 205-217
166. Teles, R. C., Calderon Lde, A., Medrano, F. J., Barbosa, J. A., Guimaraes, B. G., Santoro, M. M., and de Freitas, S. M. (2005) Biophysical journal 88, 3509-3517
167. Bosshard, H. R., Marti, D. N., and Jelesarov, I. (2004) Journal of molecular recognition : JMR 17, 1-16
168. Chan, C. H., Yu, T. H., and Wong, K. B. (2011) PloS one 6, e21624
169. Horovitz, A. (1996) Folding & design 1, R121-126
170. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M. Y., Pieper, U., and Sali, A. (2007) Current protocols in protein science / editorial board, John E. Coligan ... [et al.] Chapter 2, Unit 2 9
171. Fiser, A., Do, R. K., and Sali, A. (2000) Protein science : a publication of the Protein Society 9, 1753-1773
172. Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993) Journal of molecular biology 231, 1049-1067
173. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) Protein Eng 8, 127-134