研究生: |
夏荻本 Sharma, Dipanshu |
---|---|
論文名稱: |
二維過渡金屬二鹵化物:合成、特性分析及在燭光 OLED 中的應用 Two-Dimensional Transition Metal Dichalcogenide: Synthesis, Characterization, and Application in Candlelight OLED |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
蔡永誠
Tsai, York 董福慶 Tung, Fu-Ching 岑尚仁 Chen, Sun-Zen 如是 Siddiqui, Iram |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 過渡金屬二硫屬化物 、二硫化鉬 、二硫化鎢 、低色溫燭光有機發光二極體 |
外文關鍵詞: | TMD, MoS2, WS2, Candlelight OLED |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低色溫燭光有機發光二極體(OLED)為傳統照明技術提供了一種更具健康益處的替代方案,能顯著減少藍光暴露,避免其對生理節律的干擾、褪黑激素的抑制以及長期視網膜損害的潛在風險。本論文探討過渡金屬二硫屬化物(TMDs),特別是二硫化鉬(MoS2)和二硫化鎢(WS2),作為 OLED 空穴注入層(HIL)摻雜材料,以提升其光電特性。TMDs 憑藉其優異的載流子遷移率、可調控的光學性質和二維層狀結構,在本研究中以 0%、5%、10% 和 15% 的濃度摻入 PEDOT:PSS 基質的 HIL 中,以評估其對 OLED 效能的影響。
實驗結果顯示,摻雜 10% MoS2 的 OLED 在功率效率(PE)、電流效率(CE)及外量子效率(EQE)方面表現顯著提升,分別達到 32.7 lm/W、21 cd/A 和 13.6%,較未摻雜 TMDs 的對照組提高約 39%、21% 和 40%。相較之下,摻雜 10% WS2 的 OLED 之 PE、CE 和 EQE 分別為 30.1 lm/W、20 cd/A 和 13.1%,顯示其效能提升幅度相對較低。MoS2 摻雜 OLED 的優異表現主要歸因於增強的空穴注入能力、優化的能級排列以及更均衡的電荷傳輸,使載流子復合損耗降低,進而提升整體效率。
除了效能上的提升,本研究亦突顯 TMD 摻雜 OLED 在推動可持續發展與人因照明技術方面的潛力。開發的燭光 OLED 可提供溫暖且低強度的光照,有助於符合生理節律友好的照明標準,減少過量藍光對健康的負面影響。此外,TMD 在 OLED 結構中的應用,亦推動了符合環境、社會與治理(ESG)原則的節能照明技術發展。
未來研究可進一步優化 TMD 的合成工藝,以利大規模應用,並探討其他二維材料對 OLED 效率及器件壽命的影響。透過材料工程與器件優化策略的整合,本研究為次世代照明技術的發展提供貢獻,致力於實現兼顧人類健康與環境永續性的創新光源。
Low-color-temperature candlelight organic light-emitting diodes (OLEDs) offer a promising alternative to conventional lighting by significantly reducing blue light exposure, which has been linked to circadian rhythm disturbances, melatonin suppression, and long-term retinal damage. This thesis explores the incorporation of transition metal dichalcogenides (TMDs), specifically molybdenum disulfide (MoS2) and tungsten disulfide (WS2), into hole injection layers (HILs) to enhance OLED performance. TMDs, known for their excellent charge carrier mobility, tunable optical properties, and layered two-dimensional structure, were integrated into PEDOT:PSS-based HILs at doping concentrations of 0%, 5%, 10%, and 15%.
Experimental results demonstrate that OLEDs incorporating 10% MoS2 exhibit significant enhancements, achieving a power efficacy (PE) of 32.7 lm/W, a current efficacy (CE) of 21 cd/A, and an external quantum efficiency (EQE) of 13.6%. These values represent increases of approximately 39%, 21%, and 40%, respectively, compared to undoped devices. OLEDs with 10% WS2 achieved a PE of 30.1 lm/W, a CE of 20 cd/A, and an EQE of 13.1%, demonstrating relatively lower efficiency gains. The superior performance of MoS2-doped OLEDs is attributed to improved hole injection, optimized energy level alignment, and enhanced charge balance, resulting in reduced recombination losses and higher overall efficiency.
Beyond performance improvements, this research highlights the potential of TMD-doped OLEDs in promoting sustainable and human-friendly lighting technologies. The developed candlelight OLEDs provide a warm, low-intensity illumination that aligns with circadian-friendly lighting principles, mitigating adverse health effects associated with excessive blue light exposure. Additionally, the incorporation of TMDs into OLED architectures supports the advancement of environmentally responsible, energy-efficient lighting solutions in line with Environmental, Social, and Governance (ESG) principles.
Future investigations should focus on optimizing TMD synthesis for large-scale integration and exploring the effects of alternative 2D materials on OLED efficiency and device longevity. By leveraging material engineering and device optimization, this study contributes to the development of next-generation lighting technologies that prioritize human well-being and environmental sustainability.
References
1) H. Jou J, H. Yu H, C. Tung F, H. Chiang C, K. He Z and K. Wei M 2016 A replacement for incandescent bulbs: high-efficiency blue-hazard free organic light emitting diodes J. Mater. Chem. C 5 176–82
2) Jou J H, Su Y T, Liu S H, He Z K, Sahoo S, Yu H H, Chen S Z, Wang C W and Lee J R 2016 Wet-process feasible candlelight OLED J. Mater. Chem. C 4 6070–7
3) Anon Do “environmentally friendly” LED lights cause BLINDNESS? | Daily Mail Online
4) Jou J H, Su Y T, Liu S H, He Z K, Sahoo S, Yu H H, Chen S Z, Wang C W and Lee J R 2016 Wet-process feasible candlelight OLED J. Mater. Chem. C 4 6070–7
5) Pauley S M 2004 Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue Med. Hypotheses 63 588–96
6) Mills P R, Tomkins S C and Schlangen L J M 2007 The effect of high correlated colour temperature office lighting on employee wellbeing and work performance J. Circadian Rhythms 5
7) Sato M, Sakaguchi T and Morita T 2006 The effects of exposure in the morning to light of different color temperatures on the behavior of core temperature and melatonin secretion in humans http://dx.doi.org/10.1080/09291010500079734 36 287–92
8) Anon The effects of exposure in the morning to light of different color temperatures on the behavior of core temperature and melatonin secretion in humans: Biological Rhythm Research: Vol 36, No 4
9) Arendt J 2000 Melatonin, circadian rhythms, and sleep N. Engl. J. Med. 343 1114–6
10) Anon Melatonin, Circadian Rhythms, and Sleep | NEJM
11) Kloog I, Haim A, Stevens R G, Barchana M and Portnov B A 2008 Light at night codistributes with incident breast but not lung cancer in the female population of Israel Chronobiol. Int. 25 65–81
12) Bauer S E, Wagner S E, Burch J, Bayakly R and Vena J E 2013 A case-referent study: Light at night and breast cancer risk in Georgia Int. J. Health Geogr. 12
13) Kloog I, Stevens R G, Haim A and Portnov B A 2010 Nighttime light level codistributes with breast cancer incidence worldwide Cancer Causes Control 21 2059–68
14) Urbano T, Vinceti M, Wise L A and Filippini T 2021 Light at night and risk of breast cancer: a systematic review and dose–response meta-analysis Int. J. Health Geogr. 20
15) Johns L E, Jones M E, Schoemaker M J, McFadden E, Ashworth A and Swerdlow A J 2018 Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the Generations Study Br. J. Cancer 118 600
16) Stevens R G, George ;, Brainard C, David ;, Blask E, Lockley S W and Motta M E 2014 Breast cancer and circadian disruption from electric lighting in the modern world CA. Cancer J. Clin. 64 207–18
17) Davis S, Mirick D K and Stevens R G 2001 Night Shift Work, Light at Night, and Risk of Breast Cancer JNCI J. Natl. Cancer Inst. 93 1557–62
18) Anon Light Pollution Effects on Wildlife and Ecosystems - International Dark-Sky Association
19) Jiang J, He Y, Kou H, Ju Z, Gao X and Zhao H 2020 The effects of artificial light at night on Eurasian tree sparrow (Passer montanus): Behavioral rhythm disruption, melatonin suppression and intestinal microbiota alterations Ecol. Indic. 108
20) Chepesiuk R 2009 Missing the dark: Health effects of light pollution Environ. Health Perspect. 117
21) Anon Dark-Sky says boo to blue light | LEDs Magazine
22) Kido J, Kimura M and Nagai K 1995 Multilayer White Light-Emitting Organic Electroluminescent Device Science (80-. ). 267 1332–4
23) Anon Philadelphia Museum of Art - Research : Conservation
24) Jou J H, Chen P W, Chen Y L, Jou Y C, Tseng J R, Wu R Z, Hsieh C Y, Hsieh Y C, Joers P, Chen S H, Wang Y S, Tung F C, Chen C C and Wang C C 2013 OLEDs with chromaticity tunable between dusk-hue and candle-light Org. Electron. 14 47–54
25) Jou J H, Wang H C, Shen S M, Peng S H, Wu M H, Chen S H and Wu P H 2012 Highly efficient color-temperature tunable organic light-emitting diodes J. Mater. Chem. 22 8117–20
26) Jou J H, Chou K Y, Yang F C, Agrawal A, Chen S Z, Tseng J R, Lin C C, Chen P W, Wong K T and Chi Y 2014 A universal, easy-to-apply light-quality index based on natural light spectrum resemblance Appl. Phys. Lett. 104 203304
27) Jou J-H, Hsieh C-Y, Chen P-W, Kumar S and Hong J H 2014 Candlelight style organic light-emitting diode: a plausibly human-friendly safe night light. https://doi.org/10.1117/1.JPE.4.043598 4 043598
28) Jou J H, Hsieh C Y, Tseng J R, Peng S H, Jou Y C, Hong J H, Shen S M, Tang M C, Chen P C and Lin C H 2013 Candle Light-Style Organic Light-Emitting Diodes Adv. Funct. Mater. 23 2750–7
29) I. Roppolo, M. Sangermano, and A.C. Optical Properties of Polymer Nanocomposites, Functional and Physical Properties of Polymer Nanocomposites. In; John Wiley and Sons Ltd, 2016.
30) A. J. J. o. C. P. Bernanose No Title. 1955, 261–263.
31) Pope, H.K. and M.J.N. No Title. 1960, 31–33.
32) Pope, H.K. and M.J.T. j. o. c. P. No Title. 1960, 300–301.
33) M. Pope, H.K. and P.J.T.J. o. C.P.M. No Title. 1963, 2042–2043.
34) Helfrich, W.; Schneider, W.G. Recombination Radiation in Anthracene Crystals. Phys Rev Lett 1965, 14, 229, doi:10.1103/PhysRevLett.14.229.
35) Tang, C.; letters, S.V.-A. physics; 1987, undefined Organic Electroluminescent Diodes. aip.scitation.org 1987, 51, 913, doi:10.1063/1.98799.
36) Jou, J.H.; Su, Y.T.; Liu, S.H.; He, Z.K.; Sahoo, S.; Yu, H.H.; Chen, S.Z.; Wang, C.W.; Lee, J.R.
37) Wet-Process Feasible Candlelight OLED. J Mater Chem C Mater 2016, 4, 6070–6077, doi:10.1039/c6tc01968d.
38) Kim, M.; Kyu Jeon, S.; Hwang, S.-H.; Yeob Lee, J.; Kim, M.; Hwang, S.; Jeon, S.K.; Lee, J.Y. Stable Blue Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with Three Times Longer Lifetime than Phosphorescent Organic Light-Emitting Diodes. Advanced Materials 2015, 27, 2515–2520, doi:10.1002/ADMA.201500267.
39) Kuei, C.-Y.; Tsai, W.-L.; Tong, B.; Jiao, M.; Lee, W.-K.; Chi, Y.; Wu, C.-C.; Liu, S.-H.; Lee, G.-H.; Chou, P.-T.; et al. Bis-Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Light-Emitting Diodes with External Quantum Efficiency Exceeding 31%. Advanced Materials 2016, 28, 2795–2800, doi:10.1002/ADMA.201505790.
40) Lee, J.; Chen, H.F.; Batagoda, T.; Coburn, C.; Djurovich, P.I.; Thompson, M.E.; Forrest, S.R. Deep Blue Phosphorescent Organic Light-Emitting Diodes with Very High Brightness and Efficiency. Nat Mater 2016, 15, 92–98, doi:10.1038/NMAT4446.
41) Xu, R.P.; Li, Y.Q.; Tang, J.X. Recent Advances in Flexible Organic Light-Emitting Diodes. J Mater Chem C Mater 2016, 4, 9116–9142, doi:10.1039/C6TC03230C.
42) Hamer, J.W.; Yamamoto, A.; Rajeswaran, G.; Slyke, S.A. Van 69.4: Invited Paper: Mass Production of Full-Color AMOLED Displays. SID Symposium Digest of Technical Papers 2005, 36, 1902–1907, doi:10.1889/1.2036392.
43) AUO Available online:https://www.auo.com/englobal/New_Archive/detail/News_Archive_Technology_190823 (accessed on 15 Jan 2025).
44) LG OLED TV 2016 Display Technology Shoot-Out Available online: https://www.displaymate.com/OLED_TV2016_ShootOut_1.htm (accessed on 15 Jan 2025
45) Kosai, S.; Badin, A.B.; Qiu, Y.; Matsubae, K.; Suh, S.; Yamasue, E. Evaluation of Resource Use in the Household Lighting Sector in Malaysia Considering Land Disturbances through Mining Activities. Resour Conserv Recycl 2021, 166, 105343, doi:10.1016/J.RESCONREC.2020.105343.
46) Huang, Y.; Du, X.; Tao, S.; Yang, X.; Zheng, C. High Ef Fi Ciency Non-Doped Deep-Blue and Fl Uorescent / Phosphorescent White Organic Light-Emitting Diodes Based on an Anthracene Derivative. Synth Met 2015, 203, 49–53, doi:10.1016/j.synthmet.2014.10.019.
47) 奈 米 有 機 光 電 元 件 實 驗 室 Nano Organic Photo Available online: http://www.mse.nthu.edu.tw/~jjou/ (accessed on 15 Jan 2025).
48) Panasonic Develops World’s Highest Efficiency White OLED for Lighting | Headquarters News | Panasonic Newsroom Global Available online: https://news.panasonic.com/global/press/data/2013/05/en130524-6/en130524-6.html (accessed on 15 Jan 2025).
49) Kato, K.; Iwasaki, T.; Tsujimura, T. Over 130 Lm/W All-Phosphorescent White OLEDs for next-Generation Lighting. Journal of Photopolymer Science and Technology 2015, 28, 335–340, doi:10.2494/PHOTOPOLYMER.28.335.
50) OLED Lighting Introduction and Market Status | OLED-Info Available online: https://www.oled-info.com/oled-lighting (accessed on 15 Jan 2025).
51) OLED Light Panels, Standard and Custom - OLEDWorks Available online: https://www.oledworks.com/oled-lighting-products/ (accessed on 15 Jan 2025).
52) Global revenue trends from 2020 to 2027 for OLEDs, LEDs, Micro OLEDs, and Micro LEDs Available online: https://www.displaysupplychain.com/press-release/display-equipment-spending-expected-to-rise-47-in-2024-as-industry-rebounds.
53) Worldwide - LED Lighting Market Size 2021 | Statista Available online: https://www.statista.com/statistics/753939/global-led-luminaire-market-size/ (accessed on 15 Jan 2025).
54) Electronic Cast Sees a Fast Growing OLED Lighting Market Starting in 2015 | OLED-Info Available online: https://www.oled-info.com/electronicast-sees-fast-growing-oled- lighting-market-starting-2015 (accessed on 15 Jan 2025).
55) Cho, Y.R.; Kim, H.S.; Yu, Y.J.; Suh, M.C. Highly Efficient Organic Light Emitting Diodes Formed by Solution Processed Red Emitters with Evaporated Blue Common Layer Structure. Scientific Reports 2015 5:1 2015, 5, 1–8, doi:10.1038/srep15903.
56) Thejo Kalyani, N.; Dhoble, S.J. Organic Light Emitting Diodes: Energy Saving Lighting Technology—A Review. Renewable and Sustainable Energy Reviews 2012, 16, 2696– 2723, doi:10.1016/J.RSER.2012.02.021.
57) Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials 2011, 23, 1482–1513, doi:10.1002/ADMA.201003188.
58) Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710, doi:10.1038/NATURE07719.
59) Han, T.H.; Lee, Y.; Choi, M.R.; Woo, S.H.; Bae, S.H.; Hong, B.H.; Ahn, J.H.; Lee, T.W. Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode. Nat Photonics 2012, 6, 105–110, doi:10.1038/NPHOTON.2011.318.
60) Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. Il; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat Nanotechnol 2010, 5, 574–578, doi:10.1038/NNANO.2010.132.
61) Song, W.G.; Kwon, H.J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K.U.; Grigoropoulos, C.P.; Kim, S.; et al. High-Performance Flexible Multilayer MoS2 Transistors on Solution-Based Polyimide Substrates. Adv Funct Mater 2016, 26, 2426– 2434, doi:10.1002/ADFM.201505019.
62) Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.; Yang, J.; Dong, X. Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano 2018, 12, 56–62, doi:10.1021/ACSNANO.7B06251/ASSET/IMAGES/LARGE/NN-2017-062513_0006.JPEG.
63) Xu, J.; Wang, S.; Wang, G.J.N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V.R.; To, J.W.F.; et al. Highly Stretchable Polymer Semiconductor Films through the Nanoconfinement Effect. Science 2017, 355, doi:10.1126/SCIENCE.AAH4496.
64) Xu, J.; Shim, J.; Park, J.H.; Lee, S. MXene Electrode for the Integration of WSe2 and MoS2 Field Effect Transistors. Adv Funct Mater 2016, 26, 5328–5334, doi:10.1002/ADFM.201600771.
65) Jhulki, S.; Moorthy, J.N. Small Molecular Hole-Transporting Materials (HTMs) in Organic Light-Emitting Diodes (OLEDs): Structural Diversity and Classification. J Mater Chem C Mater 2018, 6, 8280–8325, doi:10.1039/C8TC01300D.
66) Han, J.G.; Lee, S.J.; Lee, J.; Kim, J.S.; Lee, K.T.; Choi, N.S. Tunable and Robust Phosphite- Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries. ACS Appl Mater Interfaces 2015, 7, 8319–8329, doi:10.1021/ACSAMI.5B01770/SUPPL_FILE/AM5B01770_SI_001.PDF.
67) Ding, J.; Dai, Z.; Tian, F.; Zhou, B.; Zhao, B.; Zhao, H.; Chen, Z.; Liu, Y.; Chen, R. Generation of Defect Clusters for 1O2 Production for Molecular Oxygen Activation in Photocatalysis. J Mater Chem A Mater 2017, 5, 23453–23459, doi:10.1039/C7TA08117K.
68) Jou J H, Chou K Y, Yang F C, Agrawal A, Chen S Z, Tseng J R, Lin C C, Chen P W, Wong K T and Chi Y 2014 A universal, easy-to-apply light-quality index based on natural light spectrum resemblance Appl. Phys. Lett. 104 203304.
69) Lim H, Shin H, Kim K H, Yoo S J, Huh J S and Kim J J 2017 An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes ACS Appl. Mater. Interfaces 9 37883–7.
70) International Commission on Non-Ionizing Radiation Protection, Guidelines on limits of exposure to broad-band incoherent optical radiation (0. 38 to 3 μm), Health Phys. 73 (3) (1997) 539–554.
71) Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater Adv 2021, 2, 1821–1871, doi:10.1039/D0MA00807A.
72) Singh, K.J.; Ahmed, T.; Gautam, P.; Sadhu, A.S.; Lien, D.H.; Chen, S.C.; Chueh, Y.L.; Kuo, H.C. Recent Advances in Two-dimensional Quantum Dots and Their Applications. Nanomaterials 2021, 11, doi:10.3390/NANO11061549.
73) Guisbiers, G.; Mejía-Rosales, S.; Nanomaterials, F.D.-J. of; 2012, undefined Nanomaterial Properties: Size and Shape Dependencies. hindawi.com.
74) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147.
75) Demirci, B.U.; Miele, P.; Yot, G.P. Boron-Based (Nano-)Materials: Fundamentals and Applications. Crystals 2015, 6, 18863–18871.
76) Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 2015, 9, 9507–9516.
77) Churchill, H.O.H.; Jarillo-Herrero, P. Phosphorus joins the family. Nat. Nanotechnol. 2014, 9, 330.
78) Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, 6298.
79) Gao, Y.; Shi, W.; Wang, W.; Wang, Y.; Zhao, Y.; Lei, Z.; Miao, R. Ultrasonic-Assisted Production of Graphene with High Yield in Supercritical CO2 and Its High Electrical Conductivity Film. Ind. Eng. Chem. Res. 2014, 53, 2839–2845.
80) Singh, N.; biomedical, S.S.-T. nanostructures for; 2020, undefined Properties of Two- Dimensional Nanomaterials. Elsevier.
81) Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano 2015, 9, 9451–9469, doi:10.1021/ACSNANO.5B05040.
82) Cheng, J.; Gao, L.; Li, T.; Mei, S.; Wang, C.; Wen, B.; Huang, W.; Li, C.; Zheng, G.; Wang, H.; et al. Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nanomicro Lett 2020, 12, doi:10.1007/S40820-020-00510-5.
83) Glavin, N.R.; Muratore, C.; Snure, M. Toward 2D Materials for Flexible Electronics: Opportunities and Outlook. Oxford Open Materials Science 2020, 1, doi:10.1093/OXFMAT/ITAA002.
84) Dash, G.N., Pattanaik, S.R. and Behera, S., 2014. Graphene for electron devices: The panorama of a decade. IEEE Journal of the Electron Devices Society, 2(5), pp.77-104.
85) Sengupta, J. and Hussain, C.M., 2022. Graphene-induced performance enhancement of batteries, touch screens, transparent memory, and integrated circuits: A critical review on a decade of developments. Nanomaterials, 12(18), p.3146.
86) Kim, S.J., Choi, K., Lee, B., Kim, Y. and Hong, B.H., 2015. Materials for flexible, stretchable electronics: graphene and 2D materials. Annual Review of Materials Research, 45(1), pp.63-84.
87) Nassiri Nazif, K., Daus, A., Hong, J., Lee, N., Vaziri, S., Kumar, A., Nitta, F., Chen, M.E., Kananian, S., Islam, R. and Kim, K.H., 2021. High-specific-power flexible transition metal dichalcogenide solar cells. nature Communications, 12(1), p.7034.
88) Amani, M., Lien, D.H., Kiriya, D., Xiao, J., Azcatl, A., Noh, J., Madhvapathy, S.R., Addou, R., Kc, S., Dubey, M. and Cho, K., 2015. Near-unity photoluminescence quantum yield in MoS2. Science, 350(6264), pp.1065-1068.
89) Amani, M., Burke, R.A., Ji, X., Zhao, P., Lien, D.H., Taheri, P., Ahn, G.H., Kirya, D., Ager III, J.W., Yablonovitch, E. and Kong, J., 2016. High luminescence efficiency in MoS2 grown by chemical vapor deposition. ACS nano, 10(7), pp.6535-6541.
90) Rogdakis, K., Karakostas, N. and Kymakis, E., 2021. Up-scalable emerging energy conversion technologies enabled by 2D materials: from miniature power harvesters towards grid-connected energy systems. Energy & Environmental Science, 14(6), pp.3352-3392.
91) Phogat, P., Jha, R. and Singh, S., 2024. Emerging advances and future prospects of two-dimensional nanomaterials based solar cells. Journal of Alloys and Compounds, p.175063.
92) Molina-Sanchez, A., Hummer, K. and Wirtz, L., 2015. Vibrational and optical properties of MoS2: From monolayer to bulk. Surface Science Reports, 70(4), pp.554-586.
93) Malic, E., Selig, M., Feierabend, M., Brem, S., Christiansen, D., Wendler, F., Knorr, A. and Berghäuser, G., 2018. Dark excitons in transition metal dichalcogenides. Physical Review Materials, 2(1), p.014002.
94) Zhou, B.T., Taguchi, K., Kawaguchi, Y., Tanaka, Y. and Law, K.T., 2019. Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Communications Physics, 2(1), p.26.
95) Li, C., Sang, D., Ge, S., Zou, L. and Wang, Q., 2024. Recent excellent optoelectronic applications based on two-dimensional WS2 nanomaterials: a review. Molecules, 29(14), p.3341.
96) Zhu, W.; Ding, K.; Yi, C.; Chen, R.; Wei, B.; Huang, L.; Li, J. Use of hybrid PEDOT/metal sulfide quantum dots for a hole injection layer in highly efficient green phosphorescent organic light-emitting diodes. Front. Chem. 2021, 9, 657557.
97) 24. Wang, H.; Li, D.; Yuan, Y.; Chi, F.; Liu, L.; Wang, L.; Lu, Z.; Lin, Z.; Zhang, X. Solution-processed WS2 and its doping in PEDOT for tailoring hole injection in near ultraviolet organic light-emitting diodes. Appl. Opt. 2021, 60, 2610–2615.
98) Dauchy, R.T.; Hoffman, A.E.;Wren-Dail, M.A.; Hanifin, J.P.;Warfield, B.; Brainard, G.C.; Xiang, S.; Yuan, L.; Hill, S.M.; Belancio, V.P.; et al. Daytime blue light enhances the nighttime circadian melatonin inhibition of human prostate cancer growth. Comp. Med. 2015, 65, 473–485.
99) Dauchy, R.T.; Hoffman, A.E.;Wren-Dail, M.A.; Hanifin, J.P.;Warfield, B.; Brainard, G.C.; Xiang, S.; Yuan, L.; Hill, S.M.; Belancio, V.P.; et al. Daytime blue light enhances the nighttime circadian melatonin inhibition of human prostate cancer growth. Comp. Med. 2015, 65, 473–485.
100) Randjelović, P., Stojanović, N., Ilić, I. and Vučković, D., 2023. The effect of reducing blue light from smartphone screen on subjective quality of sleep among students. Chronobiology International, 40(3), pp.335-342.
101) Jou J H, Wu M H, Shen S M, Wang H C, Chen S Z, Chen S H, Lin C R and Hsieh Y L 2009 Sunlight-style color-temperature tunable organic light-emitting diode Appl. Phys. Lett. 95 013307
102) Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B and Leo K 2009 White organic light-emitting diodes with fluorescent tube efficiency Nat. 20094597244 459 234–8
103) Adamovich V, Brooks J, Tamayo A, Alexander A M, Djurovich P I, D’Andrade B W, Adachi C, Forrest S R and Thompson M E 2002 High efficiency single dopant white electrophosphorescent light emitting diodes New J. Chem. 26 1171–8
104) Fukagawa H, Watanabe K and Tokito S 2009 Efficient white organic light emitting diodes with solution processed and vacuum deposited emitting layers Org. Electron. 10 798–802
105) Gong Y, Liu J, Zhang Y, He G, Lu Y, Fan W Bin, Yuan W Z, Sun J Z and Zhang Y 2014 AIE-active, highly thermally and morphologically stable, mechanochromic and efficient solid emitters for low color temperature OLEDs J. Mater. Chem. C 2 7552–60
106) Hu Y, Zhang T, Chen J, Ma D and Cheng C H 2014 Hybrid Organic Light-Emitting Diodes with Low Color-Temperature and High Efficiency for Physiologically-Friendly Night Illumination Isr. J. Chem. 54 979–85
107) Singh M, Jou J H, Sahoo S, Sujith S, He Z K, Krucaite G, Grigalevicius S and Wang C W 2018 High light-quality OLEDs with a wet-processed single emissive layer Sci. Reports 2018 81 8 1–9
108) Shahnawaz, Siddiqui I, Nagar M R, Choudhury A, Lin J T, Blazevicius D, Krucaite G, Grigalevicius S and Jou J H 2021 Highly Efficient Candlelight Organic Light-Emitting Diode with a Very Low Color Temperature Mol. 2021, Vol. 26, Page 7558 26 7558
109) Jou J H, Tang M C, Chen P C, Wang Y S, Shen S M, Chen B R, Lin C H, Wang W Ben, Chen S H, Chen C T, Tsai F Y, Wang C W, Chen C C and Wang C C 2012 Organic light-emitting diode-based plausibly physiologically-friendly low color temperature night light Org. Electron. 13 1349–55
110) Jou J H, Chen S H, Shen S M, Jou Y C, Lin C H, Peng S H, Hsia S P, Wang C W, Chen C C and Wang C C 2011 High efficiency low color-temperature organic light emitting diodes with a blend interlayer J. Mater. Chem. 21 17850–4
111) Lin Y-H, Yang W-Y, Lin Y-J, Chen S-Z, Wen S-W and Jou J-H 2021 Blue-hazard free candlelight-style tandem organic light-emitting diode Org. Electron. 98 106294.
112) Sharma, D., Gull, S., Ramakrishnan, A., Lenka, S., Kumar, A., Kumar, K., Lin, P.K., Wang, C.W., Chen, S.W., Grigalevicius, S. and Jou, J.H., 2024. Two-Dimensional Transition Metal Dichalcogenide: Synthesis, Characterization, and Application in Candlelight OLED. Molecules, 30(1), p.27.
113) Sathiyan, S.; Ahmad, H.; Chong,W.Y.; Lee, S.H.; Sivabalan, S. Evolution of the Polarizing Effect of MoS2. IEEE Photonics J. 2015, 7, 6100610.
114) Huang, F.; Jian, J.;Wu, R. Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. J. Mater. Sci. 2016, 51, 10160–10165.
115) Leighton, P.A. Electronic processes in ionic crystals. (Mott, N.F.; Gurney, R.W.) Journal of Chemical Education 1941, 18, p. 249.
116) Khan, M.A.; Xu, W.; Khizar-ul-Haq, K.U.H.; Bai, Y.; Jiang, X.Y.; Zhang, Z.L.; Zhu, W.Q. Electron mobility of 4,7-diphenyl-1,10-phenanthroline estimated by using space-charge-limited currents. Journal of Applied Physics 2008, 103(1).