簡易檢索 / 詳目顯示

研究生: 林煜達
Lin, Yu-Da
論文名稱: 氮化鎵大電流高電子遷移率電晶體之設計與製作
Design and Fabrication of GaN High Current High Electron Mobility Transistors
指導教授: 吳孟奇
Wu, Meng-Chyi
口試委員: 劉致為
Liu, Chee-Wee
吳肇欣
Wu, Chao-Hsin
劉嘉哲
Liu, Jia-Zhe
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 128
中文關鍵詞: 氮化鋁鎵/氮化鎵大電流高電子遷移率電晶體多根指叉型結構空乏型增強型
外文關鍵詞: AlGaN/GaN, High current, High Electron Mobility Transistors, Multi finger, Depletion mode, Enhancement mode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,我們利用氮化鋁鎵/氮化鎵成長在矽基板上,製作大電流高電子遷移率氮化鎵電晶體。由於兩者形成之異質結構擁有高電子濃度及高電子遷移率的特性,能夠提升元件操作電流並大幅降低元件的導通電阻,減少多餘功率損耗。
    首先在製作大電流高電子遷移率氮化鎵電晶體前,針對空乏型MIS HEMT作探討,並且利用氧化矽作為鈍化層,來得到較佳的遲滯特性以及不錯的動態特性。因此基於上述討論的結果,在空乏型大電流高電子遷移率氮化鎵電晶體的製作上會使用MIS gate HEMT以及SiO2作為鈍化層的結構作為基礎。
    在元件布局上首先是尋找最佳化尺寸設計,空乏型大電流高電子遷移率氮化鎵電晶體中,發現元件在閘極寬度(WG)為2000μm及2500μm時各別具有最大的飽和電流(0.78A)及(0.90A)左右,在基於這樣單顆元件的尺寸下再採用多根指叉型結構,此目的是用來提升元件電流,使得電流能夠達到數十安培的等級,此外,在多根指叉型結構中,我們也設計了不同閘極寬度(WG),分別60mm、80mm以及100mm。而當閘極寬度(WG)為100mm時,在順偏特性上能夠達到飽和電流(IDS)35.7A、導通電阻Ron為0.13Ω、閘極漏電流6.0*10-7mA/mm、開關電流比2.99*107、臨界電壓(VTH)為-13.9V,而逆偏特性上能夠達到346V的崩潰電壓。
    有了空乏型大電流高電子遷移率氮化鎵電晶體作為實驗經驗,我們也開始利用P-GaN的技術進行增強型大電流高電子遷移率氮化鎵電晶體元件的製作。而在增強型大電流高電子遷移率氮化鎵電晶體中,發現元件在閘極寬度(WG)為2000μm及2500μm時各別具有最大的飽和電流(0.42A)及(0.51A)左右。
    最後,我們也成功利用多根指叉型結構設計製造出不同閘極寬度(WG)的增強型大電流高電子遷移率氮化鎵電晶體,分別60mm、80mm以及100mm。而當閘極寬度(WG)為100mm時,在順偏特性上能夠達到飽和電流(IDS)7.5A、導通電阻Ron為0.30Ω、閘極漏電流5.15*10-2mA/mm、臨界電壓(VTH)為0.6V,而逆偏特性上能夠達到388V的崩潰電壓。


    In this thesis, we use AlGaN/GaN grown on the silicon substrate to fabricate the high power high electron mobility transistors. Due to the high electron concentration and high electron mobility, the heterostructure formed by AlGaN/GaN can increase the current and reduce the on-resistance(Ron) of the device and reduce the excess power loss.
    First, before the fabrication of high current HEMT, the depletion mode MIS gate HEMT are discussed, and SiO2 is used as a passivation layer to obtain better hysteresis characteristics and good dynamic characteristics. Therefore, based on the above discussed results, the MIS gate HEMT and SiO2 passivation are used as a basis for the structure in the fabrication of a depletion mode high current HEMT.
    In the layout of the device, the first is to find the optimal size design. It is found that the device has the maximum saturation current (0.78A) and (0.90A) when the gate width (WG) is 2000 μm and 2500 μm, respectively. Based on the size of these single device(2000μm) and (2500μm), the multi-finger structure is used. This purpose is to increase the device current so that the current can reach the tens of amps. In addition, in the multi-finger structure, we also designed different gate widths (WG) of 60mm, 80mm, and 100mm, respectively. When the gate width (WG) is 100 mm, in the forward characteristic, can achieve the saturation current (IDS) 35.7A, the on-resistance (Ron) 0.13 Ω, the gate leakage current 6.0*10-7 mA/mm, the on/off ratio 2.99*107, and the threshold voltage (VTH) is -13.9V, and in the reverse bias characteristic, breakdown voltage can be reach 346V.
    With the experience of depletion mode high current HEMT, we have also begun to use P-GaN technology to fabricate the enhancement mode HEMT. When the enhancement mode HEMT be discussed, it is also found that the device has the maximum saturation current (0.42A) and (0.51A) when the gate width (WG) is 2000 μm and 2500 μm, respectively.
    Finally, we have also succeeded in using multi-finger structure technology to design and fabricate the different gate widths (WG) enhancement mode HEMT of 60mm, 80mm, and 100mm, respectively. When the gate width (WG) is 100 mm, in the forward characteristic, can achieve the saturation current (IDS) 7.5A, the on-resistance (Ron) 0.30 Ω, the gate leakage current 5.15*10-2 mA/mm, and the threshold voltage (VTH) is 0.6V, and in the reverse bias characteristic, breakdown voltage can be reach 388V.

    摘要 I ABSTRACT III 致謝 V TABLE OF CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES XIV CHAPTER 1 INTRODUCTION 1 1.1 Research background 1 1.2 Material properties of gallium nitride (GaN) 2 1.3 Spontaneous polarization effect 3 1.4 Piezoelectric polarization effect 4 1.5 2DEG formation mechansim 6 1.6 The 2DEG density of AlGaN/GaN heterostructure 8 1.7 Motivation 9 1.8 Thesis Organization 10 CHAPTER 2 GaN-BASED HIGH ELECTRON MOBILITY TRANSISTORs 16 2.1 Epitaxial growth 16 2.1.1 Basic structure 16 2.1.2 Substrate 16 2.1.3 Nucleation buffer layers 17 2.1.4 GaN channel and AlGaN barrier layer 18 2.1.5 GaN cap layer 20 2.1.6 P-GaN layer 21 2.2 Theoretical information about HEMT operation 22 CHAPTER 3 DESIGN AND FABRICAITON OF AlGaN/GaN HEMTs 31 3.1 Epitaxial structure 31 3.2 Device layout design 32 3.2.1 MIS gate depletion mode HEMT 32 3.2.2 MIS gate depletion mode high current HEMT 32 3.2.3 P-GaN enhancement mode HEMT 33 3.2.4 P-GaN enhancement mode high current HEMT 34 3.3 Process flow for HEMT 35 3.3.1 MIS gate depletion mode HEMT 35 3.3.2 MIS gate depletion mode high current HEMT 40 3.3.3 P-GaN enhancement mode HEMT 45 3.3.4 P-GaN enhancement mode high current HEMT 50 CHAPTER 4 RESULT AND DISCUSSION 66 4.1 Investigations on electrical performance of AlGaN/GaN structure before fabrication 67 4.1.1 Hall measurement 67 4.1.2 Transmission line model (TLM) measurement 68 4.1.3 The influence of ohmic contact on P-GaN HEMT 70 4.2 MIS gate depletion mode HEMTs 71 4.2.1 Passivation 71 4.2.2 Dynamic characteristic analysis 74 4.2.3 Different gate width (WG) single HEMT characteristics analysis 76 4.2.4 Different gate to drain length (LGD) characteristics analysis 78 4.3 MIS gate depletion mode high current HEMTs 80 4.4 Enhancement mode high current HEMTs 85 4.4.1 Different gate width (WG) single HEMT characteristics analysis 85 4.4.2 Enhancement mode high current HEMTs characteristics analysis 87 CHAPTER 5 CONSLUSIONS 123 REFERENCE 125

    [1] M. Meneghini, G. Meneghesso, and E. Zanoni, "Power GaN Devices," springer, 2017.
    [2] A. S. Yalamarthy and D. G. Senesky, "Strain- and temperature-induced effects in AlGaN/GaN high electron mobility transistors," Semiconductor Science and Technology, vol. 31, no. 3, p. 035024, 2016.
    [3] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
    [4] X.-G. He, D.-G. Zhao, and D.-S. Jiang, "Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression," Chinese Physics B, vol. 24, no. 6, p. 067301, 2015.
    [5] Z. Zhong et al., "Influence of GaN domain size on the electron mobility of two-dimensional electron gases in AlGaN/GaN heterostructures determined by x-ray reflectivity and diffraction," Applied Physics Letters, vol. 80, no. 19, pp. 3521-3523, 2002.
    [6] T. Baltynov, V. Unni, and E. M. S. Narayanan, "The world’s first high voltage GaN-on-Diamond power semiconductor devices," Solid-State Electronics, vol. 125, pp. 111-117, 2016.
    [7] A. Yamada, T. Ishiguro, J. Kotani, S. Tomabechi, N. Nakamura, and K. Watanabe, "Advantages of the AlGaN spacer in InAlN high-electron-mobility transistors grown using metalorganic vapor phase epitaxy," Japanese Journal of Applied Physics, vol. 55, no. 5S, p. 05FK03, 2016.
    [8] I. B. Rowena, S. L. Selvaraj, and T. Egawa, "Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si," IEEE Electron Device Letters, vol. 32, no. 11, pp. 1534-1536, 2011.
    [9] J. L. Nariaki Ikeda, Seikoh Yoshida, "Normally-off operation power AlGaN-GaN HFET," IEEE International Symposium on Power Semiconductor Devices, 2004.
    [10] A. K. O. Hilt, F. Brunner, E. Bahat-Treidel, "Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN Buffer," IEEE International Symposium on Power Semiconductor Devices, 2010.
    [11] S. Einfeldt, H. Heinke, V. Kirchner, and D. Hommel, "Strain relaxation in AlGaN/GaN superlattices grown on GaN," Journal of Applied Physics, vol. 89, no. 4, pp. 2160-2167, 2001.
    [12] C. P. Jiang et al., "Subband electron properties of modulation-doped AlxGa1−xN/GaN heterostructures with different barrier thicknesses," Applied Physics Letters, vol. 79, no. 3, pp. 374-376, 2001.
    [13] F. B. O. Hilt, E. Cho, A. Knauer, E. Bahat-Treidel, "Normally-off High-Voltage p-GaN Gate GaN HFET with Carbon-Doped Buffer," IEEE International Symposium on Power Semiconductor Devices & IC's, 2011.
    [14] E. B.-T. Oliver Hilt, Eunjung Cho, Sebastian Singwald, "Impact of Buffer Composition on the Dynamic On-State Resistance of High-Voltage AlGaN/GaN HFETs," IEEE International Symposium on Power Semiconductor Devices and ICs, 2012.
    [15] B. G. Vinayak Tilak, Val Kaper, Hyungtak Kim, Tom Prunty, Joe Smart, James Shealy, "Influence of Barrier Thickness on the High-Power Performance of AlGaN/GaN HEMTs," IEEE Electron Device Letters, 2001.
    [16] S. R. Lee et al., "In situ measurements of the critical thickness for strain relaxation in AlGaN∕GaN heterostructures," Applied Physics Letters, vol. 85, no. 25, pp. 6164-6166, 2004.
    [17] J. A. del Alamo and J. Joh, "GaN HEMT reliability," Microelectronics Reliability, vol. 49, no. 9-11, pp. 1200-1206, 2009.
    [18] T.-S. Ko, D.-Y. Lin, C.-F. Lin, C.-W. Chang, J.-C. Zhang, and S.-J. Tu, "High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer," Journal of Crystal Growth, vol. 464, pp. 175-179, 2017.
    [19] S. Arulkumaran, N. G. Ing, V. Sahmuganathan, L. Zhihong, and B. Maung, "Improved recess-ohmics in AlGaN/GaN high-electron-mobility transistors with AlN spacer layer on silicon substrate," physica status solidi (c), vol. 7, no. 10, pp. 2412-2414, 2010.
    [20] T. Nanjo et al., "Enhancement of Drain Current by an AlN Spacer Layer Insertion in AlGaN/GaN High-Electron-Mobility Transistors with Si-Ion-Implanted Source/Drain Contacts," Japanese Journal of Applied Physics, vol. 50, no. 6, p. 064101, 2011.
    [21] Y. Y. W. Niraj Man Shrestha, Yiming Li, and E.Y. Chang, " Effect of AlN Spacer Layer on AlGaN-GaN HEMTs," International Workshop on Computational Electronics, 2013.
    [22] S. H. L. Shen, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and a. U. K. Mishra, " AlGaN-AlN-GaN High-Power Microwave HEMT," IEEE Electron Device Letters, 2001.
    [23] E. T. Yu et al., "Schottky barrier engineering in III–V nitrides via the piezoelectric effect," Applied Physics Letters, vol. 73, no. 13, pp. 1880-1882, 1998.
    [24] N. Man Shrestha, Y. Li, and E. Y. Chang, "Simulation study on electrical characteristic of AlGaN/GaN high electron mobility transistors with AlN spacer layer," Japanese Journal of Applied Physics, vol. 53, no. 4S, p. 04EF08, 2014.
    [25] S. Heikman, S. Keller, Y. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, "Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 93, no. 12, pp. 10114-10118, 2003.
    [26] S. Taking, "AlN/GaN MOS-HEMTs Technology," University of glasgow, 2012.
    [27] V. Z. Aleksei Negencev, Vladimir Egorkin, Valentin Garmash, Aleksei Emelianov "Optimization of Ohmic Contact Fabrication Technology to GaN-based Heterostructures," IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2017.
    [28] D.-F. Wang et al., "Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN," Journal of Applied Physics, vol. 89, no. 11, pp. 6214-6217, 2001.
    [29] V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, "Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n–GaN," Journal of Applied Physics, vol. 92, no. 3, pp. 1712-1714, 2002.
    [30] J. W. Zhihua Dong, Rumin Gong, Shenghou Liu, C. P. Wen, Min Yu, Fujun Xu, and B. S. Yilong Hao, Yangyuan Wang, "Multiple Ti/Al stacks induced thermal stability enhancement in Ti/Al/Ni/Au Ohmic contact on AlGaN/GaN heterostructure," IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010.
    [31] N. Chaturvedi, U. Zeimer, J. Würfl, and G. Tränkle, "Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors," Semiconductor Science and Technology, vol. 21, no. 2, pp. 175-179, 2006.
    [32] S. L. Zhao et al., "Analysis of the Breakdown Characterization Method in GaN-Based HEMTs," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1517-1527, 2016.
    [33] W. Saito, T. Suwa, T. Uchihara, T. Naka, and T. Kobayashi, "Breakdown behaviour of high-voltage GaN-HEMTs," Microelectronics Reliability, vol. 55, no. 9-10, pp. 1682-1686, 2015.
    [34] J.-J. Zhu, X.-H. Ma, B. Hou, W.-W. Chen, and Y. Hao, "Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis," AIP Advances, vol. 4, no. 3, p. 037108, 2014.
    [35] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, "Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface," Japanese Journal of Applied Physics, vol. 50, no. 2, p. 021001, 2011.
    [36] T.-L. Wu et al., "Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors," Applied Physics Letters, vol. 107, no. 9, p. 093507, 2015.
    [37] T. K. S. Ohi, H. Tokuda, "Effect of passivation films on DC characteristics of AlGaN/GaN HEMT," IEEE International Meeting for Future of Electron Devices, 2014.
    [38] T. E. S. Arulkumaran, H. Ishikawa, and T. Jimbo, "Surface passivation effects on AlGaNÕGaN high-electron-mobility transistors with SiO2, Si3N4 , and silicon oxynitride," Applied Physics Letters, 2004.
    [39] H.-K. L. Hsiang-Lin Yu, and Yi-Jen Chan, "Effect of Two-Step E-Beam SiO2 Passivation on AlGaN/GaN HEMT Performance," Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, 2009.
    [40] H.-K. Lin, H.-L. Yu, and F. H. Huang, "Performance improvement of AlGaN/GaN HEMTs using two-step silicon nitride passivation," Microwave and Optical Technology Letters, vol. 52, no. 7, pp. 1614-1619, 2010.
    [41] C. Bae, "GaN-dielectric interface formation for gate dielectrics and passivation layers using remote plasma processing," NCSU libraries, 2003.
    [42] S. Agnihotri, S. Ghosh, A. Dasgupta, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Modeling of trapping effects in GaN HEMTs," IEEE Indicon, pp. 1-4, 2015.
    [43] N. Ramanan, "Investigation of ALD Dielectrics for Improved Threshold Voltage Stability and Current Collapse Suppression in AlGaN-GaN MOS-HFETs," North Carolina State University, 2014.
    [44] R. Ramachandran, "Investigation of Surface States in Gallium Nitride Devices using a New High Frequency Measurement Technique," North Carolina State University, 2006.
    [45] W. S. Tan, M. J. Uren, P. W. Fry, P. A. Houston, R. S. Balmer, and T. Martin, "High temperature performance of AlGaN/GaN HEMTs on Si substrates," Solid-State Electronics, vol. 50, no. 3, pp. 511-513, 2006.
    [46] A. Pérez-Tomás et al., "Temperature impact and analytical modeling of the AlGaN/GaN-on-Si saturation drain current and transconductance," Semiconductor Science and Technology, vol. 27, no. 12, p. 125010, 2012.

    QR CODE