簡易檢索 / 詳目顯示

研究生: 廖建閎
Chien-Hung Liao
論文名稱: 可低溫共燒之玻璃-陶瓷/氧化鋁積層結構的自我束縛燒結行為
Self-constrained sintering of a multilayer low-temperature-cofired glass-ceramics/alumina laminate
指導教授: 簡朝和
Jau-Ho Jean
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 16
中文關鍵詞: 低溫共燒陶瓷翹曲應力束縛燒結
外文關鍵詞: low-temperature-cofired ceramics(LTCC), camber, stress, constrained sintering
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中已經成功研發出由CaO-B2O3-SiO2玻璃(CBSG)和Al2O3組成的自我束縛低溫共燒陶瓷系統。實驗方法是製作由CBSG和Al2O3組成的CBSG/Al2O3積層結構,改變的參數分別為束縛層Al2O3層的厚度和Al2O3粒徑。因為CBSG的燒結緻密溫度遠低於Al2O3,所以束縛在CBSG表面不緻密的Al2O3在共燒時可以有效阻止CBSG在X-Y方向的收縮,待CBSG燒結緻密後,CBSG會藉由毛細作用從Al2O3孔隙滲透進入Al2O3層,並與Al2O3反應促使Al2O3層變緻密。此種交互束縛的行為可使CBSG/Al2O3系統在共燒的過程中,只有Z方向產生收縮,X-Y方向幾乎沒有收縮,表現出此自我束縛低溫共燒陶瓷系統緻密的獨特性。


    一、簡介………………………………………………………………1 二、實驗方法…………………………………………………………3 2.1 原始材料……………………………………………………3 2.2 漿料製備……………………………………………………3 2.3 刮刀製程……………………………………………………3 2.4 疊壓…………………………………………………………4 2.5 脫脂除碳……………………………………………………4 2.6 燒結…………………………………………………………4 2.6.1 等溫燒結……………………………………………4 2.6.2 非等溫燒結…………………………………………4 2.7 性質分析……………………………………………………5 2.7.1 燒結收縮量測………………………………………5 2.7.2 顯微結構觀察………………………………………5 2.7.3 X光繞射分析………………………………………5 2.7.4 氧化鋁平均孔隙大小量測…………………………6 三、結果與討論………………………………………………………7 3.1自由燒結與自我束縛燒結…………………………………7 3.2束縛層厚度對自我束縛燒結的影響………………………7 3.3界面反應層的動力學機制…………………………………8 3.4束縛層粉末粒徑對自我束縛燒結的影響…………………11 四、結論………………………………………………………………13 五、參考文獻…………………………………………………………14

    [1] W. A. Vitrio and R. L. Brown, “Process for Fabricating Dimensionally Stable Interconnect Boards,” U.S. Pat. No. 4,645,552, 1987.

    [2] K. R. Mikeska and D. T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” U.S. Pat. No. 5,254,191, 1993.

    [3] B. Geller, B. Thaler, A. Fathy, M. J. Liberatore, H. D. Chen, G. Ayers, V. Pendrick, and Y. Narayan, “LTCC-M: An Enabling Technology for High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72 (1999).

    [4] J. Bang and G. Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In Situ Measurement of Film Stresses,” J. Am. Ceram. Soc., 78 [3] 813-15 (1995).

    [5] T. J. Garino and H. K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11] C315-17 (1987).

    [6] T. J. Garino and H. K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 [2] 251-57 (1990).

    [7] G. W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate,” J. Am. Ceram. Soc., 68 [4] 216-20 (1985).

    [8] Y. C. Lin and J. H. Jean, “Constrained Sintering of Silver Circuit Paste,” J. Am. Ceram. Soc., 87 [2] 187-91 (2004).

    [9] R. K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68 [6] 287-92 (1985).

    [10] S.Y. Tzeng and J. H. Jean, “Stress Development during Constrained Sinetring of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [2] 335-40 (2002).

    [11] Y. C. Lin and J. H. Jean, “Constrained Densification Kinetics of Alumina/Borosilicate Glass + Alumina/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [1] 150-54 (2002).

    [12] J. C. Chang and J. H. Jean, “Self-Constrained Sintering of Mixed Low-Temperature-Cofired Ceramic Laminates,” J. Am. Ceram. Soc., 89 [3] 829-35 (2006).

    [13] C. D. Lei and J. H. Jean, “Effect of Crystallization on the Stress Required for Constrained Sintering of CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 88 [3] 599-603 (2005).

    [14] C. R. Chang and J. H. Jean, “Crystallizatin Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable Cao-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).

    [15] S. Pejovnik, D. Kolar, W. J. Huppmann, and G. Petzow, “Sintering of Alumina in Presence of Liquid Phase”; pp. 285-92 in Sintering-New Developments. Edited by M. M. Ristic. Elsevier, Amsterdam, The Netherlands, 1978.

    [16] J. H. Jean and T. K. Gupta, “Liquid-Phase Sintering in the Glass-Cordierite System,” J. Mater. Sci., 27 [6] 1575-84 (1992).

    [17] R. R. Tummala and B. J. Foster, “Wetting of Glass-to-Metal and Glass-to-Ceramic in Water-Vapour Atmospheres,” J. Mater. Sci. Lett., 10 [5] 905-06 (1975).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE