研究生: |
凃建安 Tu, Chien-An |
---|---|
論文名稱: |
發展傾轉載台應用於桌上型掃描穿透式電子顯微鏡 Development of Tilting Sample Holder Applied for Desktop Scanning Transmission Electron Microscope |
指導教授: |
陳福榮
Chen, Fu-Rong 歐陽汎怡 OuYang, Fan-Yi |
口試委員: |
吳文偉
Wu, Wen-Wei 蘇紘儀 Su, Hong-Yi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 桌上型電子顯微鏡 、傾轉載台 、掃描穿透式電子顯微鏡 |
外文關鍵詞: | Desktop Electron Microscope, Scanning Transmission Electron Microscope, Tilting Sample Stage |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與其他儀器發展的過程類似,電子光學系統也正朝向微型化的趨勢發展。桌上型的電子光學系統也在近五十年間陸續的商業化。目前的商業化桌上型電鏡,大多數仍以掃描式電鏡(SEM)為主,而本實驗室目前設計出的六硼化鑭電子槍掃描穿透式桌上型電鏡(STEM),可以收集穿透電子訊號,對薄樣品而言,STEM影像的對比度會比SEM影像好上很多,觀測低原子序樣品的能力也較強,也因此使桌上型電鏡的發展更進一步。
本研究分為兩階段,由於穿透電子訊號強度與樣品原子序大小相關,因此第一階段我藉由拍攝200nm SiO2奈米顆粒樣品,找出基於目前桌上型電子顯微鏡的解析能力,樣品試片能夠取得高角度環形暗場影像的最佳載台高度、樣品到偵測器之間工作距離等環境參數。第二階段則是發展桌上型掃描穿透式電子顯微鏡的載台傾轉功能,由於自行設計的傾轉載台,需要在狹小的真空腔體中使用且硬體間不能發生干涉,因此載台需要設計得體積小且同時方便操作,並使用模擬軟體來模擬載台在不同自然頻率下的震動模態,藉此找出降低震動的材料與設計,同時能提升影像品質,最終我們成功設計降低震動影響的傾轉載台,並收集到不同角度下的穿透散射電子訊號,也以傾轉載台拍攝出不同角度的影像,並且應用於桌上型電子顯微鏡的EDS訊號收集上,我們發現在目前的機體架構下,傾轉角度30°時會有最佳的EDS訊號偵測效率。
The desktop Electron Microscopes (desktop EMs) have been commercialized in the recent years. Current commercial desktop EMs are mainly based on scanning electron microscope (SEM) mode, which limits the ability to observe various kinds of samples on desktop EMs. To broaden the capability of desktop EMs, a homemade desktop scanning transmission electron microscope (desktop STEM) is designed, which collects signals of both backscattered electrons and transmission scattering electrons. The contrast of desktop STEM images is much better than the contrast of desktop SEM images for low atomic number (low Z) samples.
The research is divided into two steps. In the first step we try to record high angle annular dark field (HAADF) images by recording images of low Z nanoparticle samples because the contrast of HAADF images is related to Z. In the second step we develop a tilting sample holder for desktop STEM. Since the vibration influence on the tilting sample holder is relatively larger than that on the original sample holder, we deal with the vibration problem by simulating Eigen frequency of the sample holder and improving the mechanical design of it. Finally we successfully record tilting images with implicit vibration influence.
[1] D.B. Williams, C.B. Carter, The transmission electron microscope, in: Transmission electron microscopy, Springer, 1996, pp. 3-17.
[2] R.E. Lee, Scanning electron microscopy and X-ray microanalysis, PTR Prentice Hall, 1993.
[3] J. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig Jr, C.E. Lyman, C. Fiori, E. Lifshin, Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists, Springer Science & Business Media, 2012.
[4] 張維祐, 曾英碩, 方建閔, 陳福榮, 新世代桌上型電子顯微鏡的設計與製作, 科儀新知, (2013) 4-13.
[5] H.H. Rose, Geometrical charged-particle optics, Springer, 2009.
[6] J. Zach, M. Haider, Aberration correction in a low voltage SEM by a multipole corrector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 363 (1995) 316-325.
[7] H. Schatten, J.B. Pawley, Biological low-voltage scanning electron microscopy, Springer, 2008.
[8] D. Maas, S. Henstra, M. Krijn, S. Mentink, Electrostatic aberration correction in low-voltage SEM, in: Proc. SPIE, 2001, pp. 205-217.
[9] S. Asahina, T. Togashi, O. Terasaki, S. Takami, T. Adschiri, M. Shibata, N. Erdman, High-resolution low-voltage scanning electron microscope study of nanostructured materials, Microscopy and Analysis, 2 (2012) S12-S14.
[10] R. Richards, G.R. Owen, I. Ap Gwynn, Low voltage backscattered electron imaging (< 5 kV) using field emission scanning electron microscopy, Scanning Microsc, 13 (1999) 55-60.
[11] D.C. Joy, C.S. Joy, Low voltage scanning electron microscopy, Micron, 27 (1996) 247-263.
[12] H.A. Béarat, Low Voltage Scanning Electron Microscopy: Promises and Challenges, in, Application Note# 5991-0736EN, Agilent Technologies Inc. 2012, 4p.
[13] Y. Beyer, R. Beanland, P. Midgley, Low voltage STEM imaging of multi-walled carbon nanotubes, Micron, 43 (2012) 428-434.
[14] F. Boerrnert, A. Bachmatiuk, B. Buechner, M. Ruemmeli, Low-voltage aberration-corrected transmission electron microscopy: progressing carbon nanostructures, Microscopy: Science, Technology, Applications and Education, 1852 (1846).
[15] A. Morikawa, C. Kamiya, S. Watanabe, M. Nakagawa, T. Ishitani, Low-voltage dark-field STEM imaging with optimum detection angle, Microscopy and Microanalysis, 12 (2006) 1368.
[16] H.A. Béarat, Potential of Low Voltage Scanning Electron Microscopy Use in Archaeology and History of Art: A Preliminary Study.
[17] M. Shiojiri, Imaging of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy and Microscopy Studies of GaN-based Light Emitting Diodes and Laser Diodes, CHIANG MAI JOURNAL OF SCIENCE, 35 (2008) 495-520.
[18] M. Shiojiri, T. Yamazaki, Atomic resolved HAADF-STEM for composition analysis, JEOL news, 38 (2003) 54.
[19] X.F. Zhang, A 200-kV STEM/SEM Produces 1 Å SEM Resolution, Microscopy Today, 19 (2011) 26-29.
[20] K. Ganesh, M. Kawasaki, J. Zhou, P. Ferreira, D-STEM: A parallel electron diffraction technique applied to nanomaterials, Microscopy and Microanalysis, 16 (2010) 614-621.
[21] A. V. Crewe, J. Wall, J. Langmore, Visibility of Single Atoms, Science, 168 (1970), 1338-1340.
[22] S. J. Pennycook, L. A. Boatner, Chemically Sensitive Structure-Imaging with a Scanning Transmission Electron Microscope, Nature, 336(1988), 565-567.
[23] S. J. Pennycook, Z-contrast stem for materials science, Ultramicroscopy, 30(1989), 58-69.
[24] E. M. James, N. D. Browning, A. W. Nicholls, M. Kawasaki, Y. Xin, S. Stemmer, Demonstration of atomic resolution Z-contrast imaging by a JEOL JEM-2010F scanning transmission electron microscope, Journal of Electron Microscopy 47(1998), 561-574.
[25] M. Shiojiri, Imaging of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy and Microscopy Studies of GaN-based Light Emitting Diodes and Laser Diodes, Chiang Mai Journal of Science, 35(2008), 495-520.
[26] P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe, B. T. M. Willis, Intensity of diffracted intensities, International Tables for Crystallography (2006). Vol. C, ch. 6.1, 554-595.
[27] Chun-Ying Tsai, Yuan-Chih Chang, Ivan Lobato, Dirk Van Dyck, Fu-Rong Chen, Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins, Scientific Reports, 6(2016), 1-9.
[28] L.-M. Peng, G. Ren, S. L. Dudarev and M. J.Whelan, Debye–Waller Factors and Absorptive Scattering Factors of Elemental Crystals.
[29] Akinari Morikawa, Chisato Kamiya, Shunya Watanabe, Mine Nakagawa, Tohru Ishitani, Low-Voltage Dark-Field STEM Imaging with Optimum Detection Angle, Microsc Microanal, 12(2006), 1368-1369
[30] http://library.tescan.com/index.php/application-examples/84
[31] Radon J., On the Determination of Functions from their Integrals along Certain Manifolds, Ber. Verh, Sachs Akad Wiss., 69(1917), 262-277.
[32] Hart RG., Electron microscopy of unstained biological material: the polytropic montage, Science, 159(1968),1464-1467.
[33] de Rosier DJ, Klug A., Reconstruction of three dimensional structures from electron micrographs, Nature, 217(1968), 130-134.
[34] Marcel A. Verheijen, Rienk E. Algra, Magnus T. Borgstrom, George Immink, Erwan Sourty, Willem J. P. van Enckevort, Elias Vlieg, Erik P. A. M. Bakkers, Three-Dimensional Morphology of GaP−GaAs Nanowires Revealed by Transmission Electron Microscopy Tomography, Nano Letters, 7(2007), 3051-3055.
[35] Ileana Florea, Cédric Feral-Martin, Jérome Majimel, Dris Ihiawakrim, Charles Hirlimann, Ovidiu Ersen, Three-Dimensional Tomographic Analyses of CeO2 Nanoparticles, crystal growth & design, 13(2013), 1110-1121.