研究生: |
張宇翔 Chang, Yu-Hsiang |
---|---|
論文名稱: |
氧分子對Si(111)-7x7表面碳化的影響 The effect of O2 molecules on the carbonization of Si(111)-7x7 surface |
指導教授: |
羅榮立
Lo, Rong-Li |
口試委員: |
蘇維彬
Su, Wei-Bin 簡紋濱 Jian, Wen-Bin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 氧 、氧分子 、碳化 、矽(111) |
外文關鍵詞: | O2 molecules |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體與5G相關通訊產業的發展,半導體材料碳化矽(SiC)扮演重要的角色,為了突破元件體積的侷限與造成的負面影響,目前仍就是非常熱門的研究。論文中,我們是利用C2H4與C2H4+O2曝在Si(111)-7x7熱表面的碳化實驗,接著使用STM觀察其碳化表面。我們藉由改變溫度以及C2H4與O2的曝氣量,進而觀察反應產物的變化,像是一層原子深的凹陷(Crater)、二維結構以及三維的碳化矽顆粒(Grain)。從這些實驗結果,我們發現O2分子增強碳化產物的形成。這增強原因是由O2分子與表面Si原子發生放熱反應,生成揮發性氣體的SiO。我們碳化實驗的二維結構為((3^(1/2))x(3^(1/2)))R30度重構,其為其為Si(111)-7x7碳化表面起初的產物。最後,我們的觀察與文獻C2H2高溫STM實驗結果一致。
With the development of the semiconductor and 5G-related communication industry, the semiconductor material silicon carbide (SiC) plays an important role. In order to break through the limitation of the component volume and the negative impact, silicon carbide is still a very hot research topic. In this thesis, by exposing C2H4 or (C2H4+O2) to hot Si(111)-7x7, we use scanning tunneling microscope (STM) to observe the carbonization of 7x7 surface. By changing the substrate temperature and the exposure of C2H4 and O2, we observe the changes of reacted products, like monolayer-deep craters, two-dimensional (2D) structures, and 3D grain. From these results, we found that O2 molecules enhance the creation of carbonization products. This enhancement is explained by the exothermic reaction of O2 molecules with surface Si atoms to yield volatile SiO. The 2D structure of carbonized surface in our results is conrmed to be a ((3^(1/2))x(3^(1/2)))R30度 reconstruction which is the initial product of carbonization on Si(111)-7x7 surface. This observation is consistent with the high temperature STM results of C2H2 in the literature.
[1] 周勇成,STM研究Si(111)表面的初始碳化,國立清華大學物理系,碩士論
文,中華民國108年
[2] P .Castrucci, A .Sgarlata, M .Scarselli, M .De Crescenzi, “STM study of acetylene reaction with Si(111): observation ofa carbon-induced Si(111) ((3^(1/2))x(3^(1/2)))R30度 reconstruction”, Surface Science 531, L329{L334, (2003)
[3] C. A. Pignedoli, A. Catellani, P. Castrucci, A. Sgarlata, M. Scarselli, M. De Crescenzi, and C. M. Bertoni, “Carbon induced restructuring of the Si(111) surface”, Phys. Rev. B 69, 113313, (2004)
[4] M. Scarselli, P. Castrucci, P.D. Szkutnik, A. Sgarlata, M. De Crescenz, “STM study of Si(1 1 1)7x7 reconstructed surface carbonization induced by acetylene”, Surface Science 559, 223-232, (2004)
[5] M. De Crescenzi, M. Marucci, R. Gunnella, P. Castrucci, M. Casalboni, G. Dufour, F. Rochetc, “Si1-xCx formation by reaction of Si(111) with acetylene: growth mode, electronic structure and luminescence investigation”, Surface Science, VOLUME 426, 277-289, (1999)
[6] M. De Crescenzi,R. Bernardini,R. Gunnella,P. Castrucci,M. Casalboni,R. Pizzoferrato, “Interaction of acetylene on Si(111): Growth and luminescence study of Si1-xCx thin layers”, Philosophical Magazine B, pp.669-678, (2009)
[7] M De Crescenzi, R Bernardini, S Pollano, R Gunnella, P Castrucci, G DufourbFRochet, “Acetylene on Si(111): carbon incorporation in the growth of c-SiC thin layers”, Surface Science, Volume 489, Issue 1-3, Pages 185-190, (2001)
[8] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides”, Nature volume 399, pages758-761, (1999)
[9] A. Feltz, U. Memmert, R. J. Behm, “High temperature scanning tunneling microscopy studies on the interaction of O2 with Si(111)-(7x7) surfaces”, Surface Science 314, 34-56, (1994)
[10] Ph. Avouris, In-Whan Lyo, and F. Bozso, “Atom-resolved surface chemistry: The early steps of Si(111)-7x7 oxidation”, Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 9, 424, (1991)
[11] J. Seiple, J. Pecquet, Z. Meng, and J. P. Pelz, \Elevated temperature oxidation and etching of the Si(111)-7x7 surface observed with scanning tunneling microscopy", Journal of Vacuum Science Technology A 11, 1649, (1993)
[12] F. M. Leibsle, A. Samsavar, and T. C. Chiang, “Oxidation of Si(111)-(7x7) as studied by scanning tunneling microscopy”, Phys. Rev. B 38, 5780(R) - Published 15, (1988)
[13] Ph. Avouris, In-Whan Lyo, and F. Bozso, “Atom-resolved surface chemistry: The early steps of Si(111)-7x7 oxidation”, Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 9, 424, (1991)
[14] J. P. Pelz and R. H. Koch, “Successive oxidation stages of adatoms on the Si(111)7x7 surface observed with scanning tunneling microscopy and spectroscopy”, Phys. Rev. B 42, 3761(R), (1990)
[15] F. W. Smith and G. Ghidini, “Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of SiO2”, Journal of The Electrochemical Society, 1300-1306, (1982)
[16] picture from EZPhysics 物理通的掃描式穿隧式顯微鏡實驗(STM)
[17] J. Tersoff and D. R. Hamann, “Theory of the scanning tunneling microscope”, Phys. Rev. B31, 805, (1985)
[18] G. Binnig and H. Rohrer, “Scanning Tunneling Microscopy”,Sur Sci 126, 236-244, (1983)
[19] C. Bishop, “Vacuum deposition onto webs”, lms and foils (2007)
[20] TD Mark, GH Dunn, \Electron impact ionization", Springer Science and Business Media, (2013)
[21] Philip E. MillerM, Bonner Denton, \The quadrupole mass lter: Basic operating concepts", Journal of chemical education, (1986)
[22] Picture from Spec official website and manual.
[23] A. D. Chew, “Mechanical vaccum pumps”, CAS - CERN Accelerator School and ALBA Synchrotron Light Facility : Course on Vacuum in Accelerators, 43-64, May(2007)
[24] 行政院國家科學委員會精密儀器發展中心, “真空技術與應用(VACUUM
TECHNOLOGY and APPLICATION)”
[25] M. Audi, M. de Simon, “Ion pumps”, Volume 37, Issues 8-9, Pages 629-636, (1987)
[26] Picture from Varian official website.