簡易檢索 / 詳目顯示

研究生: 王賢軍
論文名稱: 碳氧化矽與氮氧化矽薄膜應用於離子感測膜之研究
Study on ion sensing membrane with silicon oxycarbide and silicon oxynitride thin films
指導教授: 陳建瑞
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 83
中文關鍵詞: 離子感應場效電晶體高密度電漿化學氣相沉積感應耦合型電漿碳氧化矽氮氧化矽
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以感應耦合電漿源(Inductively Coupled Plasma, ICP)沈積離子感測薄膜,以探討製程溫度與不同氣體流量比對感測膜之敏感度之影響。在沉積完感測薄膜後,利用原子力顯微鏡量測表面的粗糙度、傅利葉紅外光譜儀量測薄膜之化學鍵結、膜厚測厚儀量測薄膜厚度與折射率、低掠角X光繞射分析感測膜結晶情形與敏感度之關係、能量散佈分析儀可分析感測膜之成份與敏感度之關係、C-V曲線量測感測膜之界面陷阱電荷對感測敏感度之影響及I-V曲線量測感測膜之漏電流之情形。
    由實驗結果可知當氣體流量比N2O / NH3=0/180,製程溫度200℃時,有最佳之氫離子敏感度54.6mV/pH,其氫離子感測範圍為pH 1至pH 11,非常接近理論值59.6 mV/pH。當氣體流量比N2O / NH3=180/0,製程溫度300℃時,其最佳之鈉離子敏感度29.5mV/pNa,其鈉離子感測範圍為pNa 1至pNa 3;當氣體流量比N2O / NH3=150/30,製程溫度200℃時,可得最佳之鉀離子敏感度 24.5 mV/pK,其鉀離子感測範圍為pK 1至pK 3


    目錄 摘要-------------------------------------------------------------------------------------I 致謝------------------------------------------------------------------------------------II 目錄-----------------------------------------------------------------------------------III 圖目錄---------------------------------------------------------------------------------V 表目錄-------------------------------------------------------------------------------VII 第一章 緒論--------------------------------------------------------------------------1 1-1 前言---------------------------------------------------------------------------1 1-2 ISFET之發展背景----------------------------------------------------------6 1-3 研究動機與目的----------------------------------------------------------10 第二章 理論分析與探討----------------------------------------------------------12 2-1 能士特定理----------------------------------------------------------------12 2-2 界面電化學----------------------------------------------------------------15 2-2-1 電雙層簡介------------------------------------------------------------16 2-2-2 界面電化學------------------------------------------------------------23 2-3 離子感測場效電晶體之工作原理-------------------------------------28 2-3-1 MIS 結構-------------------------------------------------------------29 2-3-2 EIS 結構--------------------------------------------------------------31 第三章 實驗步驟與流程----------------------------------------------------------34 3-1 實驗流程---------------------------------------------------------------------34 3-2 晶片準備---------------------------------------------------------------------35 3-3 晶片清洗---------------------------------------------------------------------35 3-4 成長氧化層------------------------------------------------------------------35 3-5 以HDPCVD生成感測膜層-----------------------------------------------36 3-5-1 高密度電漿化學氣相沉積系統------------------------------------36 3-5-2 感測膜材料的選擇---------------------------------------------------37 3-5-3 製程參數---------------------------------------------------------------38 3-6 感測膜之物性分析與量測------------------------------------------------41 3-7 EIS結構製作---------------------------------------------------------------41 3-8 EIS結構量測---------------------------------------------------------------44 第四章 結果與討論----------------------------------------------------------------46 4-1 傅立葉轉換紅外線光譜分析-------------------------------------------46 4-2 原子力顯微鏡表面粗糙度分析----------------------------------------52 4-3 低掠角X光繞射分析-----------------------------------------------------55 4-4 感測膜之厚度與折射率分析-------------------------------------------64 4-5 能量散佈分析儀----------------------------------------------------------66 4-6 I-V曲線量測---------------------------------------------------------------68 4-7 C-V曲線量測--------------------------------------------------------------70 4-8 感測膜之EIS結構量測與分析-------------------------------------------73 第五章 結論-------------------------------------------------------------------------79 參考文獻-----------------------------------------------------------------------------80 圖目錄 圖1-1 離子感測場效電晶體之架構圖-------------------------------------------9 圖1-2 半導體場效電晶體之架構圖----------------------------------------------9 圖2-1 在固體╱溶液界面之電位變化------------------------------------------22 圖2-2 電位隨固體表面起之距離的變化---------------------------------------22 圖2-3 ISFET元件Site-Bonding Model示意圖----------------------------------23 圖2-4 P型半導體之能帶圖--------------------------------------------------------30 圖2-5 C-V曲線圖-------------------------------------------------------------------30 圖2-6 EIS等效電路-----------------------------------------------------------------33 圖3-1 實驗流程---------------------------------------------------------------------34 圖3-2 封裝完成之 EIS 結構----------------------------------------------------43 圖3-3 EIS結構之C-V量測系統---------------------------------------------------45 圖3-4 EIS量測結構圖--------------------------------------------------------------45 圖4-1 氣體流量比O2 / 3MS = 0 / 20於不同溫度下之鍵結變化情形------49 圖4-2 氣體流量比N2O / NH3=0/180於不同溫度下之鍵結變化情形-----49 圖4-3 氣體流量比N2O / NH3=180/0於不同溫度下之鍵結變化情形-----49 圖4-4 於100℃下不同流量比所成長的碳氧化矽之鍵結變化情形-------50 圖4-5 於200℃下不同流量比所成長的碳氧化矽之鍵結變化情形-------50 圖4-6 於300℃下不同流量比所成長的碳氧化矽之鍵結變化情形-------50 圖4-7 於100℃下不同流量比所成長的氮氧化矽之鍵結變化情形-------51 圖4-8 於200℃下不同流量比所成長的氮氧化矽之鍵結變化情形-------51 圖4-9 於300℃下不同流量比所成長的氮氧化矽之鍵結變化情形-------51 圖4-10 氣體流量比N2O / NH3=0/180製程溫度200℃時之表面粗糙度--54 圖4-11 氣體流量比N2O / NH3=0/180製程溫度200℃時之表面粗糙度立體圖-----------------------------------------------------------------------54 圖4-12 不同溫度下成長的氣體流量比O2 / 3MS = 0 / 20之結晶情形----58 圖4-13 不同溫度下成長的氣體流量比N2O / NH3 = 0/180之結晶情形--59圖4-13 不同溫度下成長的氣體流量比N2O / NH3 = 180/0之結晶情形--60 圖4-15 氣體流量O2 / 3MS = 100/20 於不同溫度下成長的碳氧化矽之結晶情形-----------------------------------------------------------------------61 圖4-16 於300℃下不同流量比所成長的碳氧化矽之結晶情形------------62 圖4-17 於200℃下不同流量比所成長的氮氧化矽之結晶情形------------63 圖4-18 O2 / 3MS = 100 / 20製程溫度200℃之成份分佈狀況---------------67 圖4-19 MIS結構之C-V量測------------------------------------------------------71 圖4-20 不同氣體流量比N2O / NH3於200℃之MIS結構C-V曲線------72 圖4-21 氣體流量比N2O / NH3=0/180之MIS結構C-V曲線---------------72 圖4-22 氣體流量比N2O / NH3=0/180於pH7之EIS結構C-V曲線------75 圖4-23 氣體流量比N2O / NH3=0/180於pH7之平帶電壓圖---------------75 圖4-24 感測膜於不同pH值之EIS結構C-V曲線------------------------------76 圖4-25 感測膜於不同pH值之感測度變化------------------------------------76 表目錄 表1-1 可提供化學感測器之信號轉換器----------------------------------------4 表1-2 化學感測器應用舉例-------------------------------------------------------5 表3-1 感測膜之製程參數---------------------------------------------------------40 表3-2 C-V量測參數----------------------------------------------------------------44 表4-1 感測膜之方均根粗糙度值------------------------------------------------53 表4-2 感測膜之結晶情形---------------------------------------------------------57 表4-3 感測膜之折射率與厚度---------------------------------------------------65 表4-4 O2 / 3MS = 100 / 20製程溫度200℃之成份分佈-----------------------67 表4-5 感測膜之漏電流情形------------------------------------------------------69 表4-6 感測膜對氫離子之敏感度------------------------------------------------77 表4-7 感測膜對鈉離子之敏感度------------------------------------------------77 表4-8 感測膜對鉀離子之敏感度------------------------------------------------78

    參考文獻

    [ 1] S. Zhang, G. Wright, Y. Yang, “ Materials and techniques for electrochemical biosensor design and construction”, Biosensors and Bioelectronics 15, 2000, 273-282.
    [ 2] 萬其超, "電化學之原理與應用", 徐氏基金會,1975, 19-21.
    [ 3] 田福助, "電化學:基本原理與應用", 五洲出版社,1987, 57-59.
    [ 4] 田中正三郎, "電化學實驗", 復漢出版社,1982, 71-75.
    [ 5] 田蔚城, “生物技術”, 九州圖書文物有限公司,1996, 247-262.
    [ 6] 江晃榮, 李必楚, “生物感測器-電子學與生物工業的結合”,科學月刊,
    第17卷第5期, 1986, 350-355.
    [ 7] F. Scheller, F. Schubert, D. Pfeiffer, R. Hintsche, I. Dransfeld, R. Remmeberg, U. Wollenber,
    K.Riedel, M. Pavlova, M. Kuhn, M. Muller, P. M. Tan, W. Moritz, "Research and development of biosensors : a review",Analyst 114, 1989 ,653-662.
    [ 8] 王柯敏,蕭丹,沒有生命的感官—化學傳感器揭密,2001,曉園出版社
    [ 9] P. Bergveld, “Development of an Ion Sensitive Solid-State Device for Neurophysiological Measurement”, IEEE Trans.Biomed.Eng.,vol.17,1970, 70-71
    [10] 武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第1期,1990, 57-62。
    [11] B. D. Liu, Y. K. Su and S. C. Chen, “Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing”, Int. J. Electronic, vol. 67, NO1, 1989, 59-63.
    [12] 武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第2期,1992, 51-55。
    [13] P. Bergveld and A.Sibbald , “Analytical and biomedical applications of ion selective field-effect transistors”, Elsevier Science Publishing Company Inc., New York, ,1988,.
    [14] G. J. Mohr, I. Murkovic, F. Lehmann, C. Haider, and O. S. Wolfbeis, “Application of potential-sensitive fluorescent dyes in anion- and cation -sensitive polymer membranes”, Sensors and Actuators B, 38-39 , 1997, 239-245.
    [15] H. Seo, C. S. Kim, B. K. Sohn, T. Yeow, M. T. Son, and M. Haskard, “ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide”, Sensors and Actuators B, 40,1997, 1-5.
    [16] J. W. Fergus, “ The application of solid fluoride electrolytes in chemical sensors”, Sensors and Actuators B, 42,1997, 119-130.
    [17] A. S. Wong, “Theoretical and Experiment Studies of CVD Aluminum Oxide As a pH Sensitive Delectric for The Back Contacts ISFET Sensor”, Ph.D. Thesis, Case Western Reserve University, 1985.
    [18] R. E. G. Van, P, Bergveld, “Characterization and Testing of Polymer-Oxide Adhesion to Improve The Packaging Reliability of ISFETs”,J. F. J. Engbersen and D. N. Reinhoudt, Sensors and Actuators B, 23, 1995, 17-26.
    [19] B. H. Van Der Schoot,H. H. Van Den Vlekkert,and N. F. De Rooij, “A Flow Injection Analysis System with Glass-Bonded ISFETs for the Simultaneous Detection of Calcium and Potassium Ions and pH”, Sensors and Actuators B, 4, 1994, 239-241.
    [20] C. D. Fung , P. W. Cheung, W. H. Ko, “A Generalized Theory of An Electrolyte-Insulator-Semiconductor Field-Effect Transistor”, IEEE Trans. Electron Devices, vol.ED-33,NO.1,1986, 8-18.
    [21] L. Bousse , J. Shott and J. D. Meindl, “A Preocess for Combined fabricaton of Ion Sensors and COMS Circuit” , IEE Electron Devices Letters,vol 9. NO. 1. January 1988, 44-46.
    [22] C. Dumschat, H. Muller, H. Rautschek, H. J. Timpe, W. Hoffmann, M. P. Pham and J. Huller, “Encapsulation of Chemically Sensitive Field-Effect Transistors With Photocurable Epoxy Resins”, Sensors and Actuators B, 38-39 , 1990, 271-276.
    [23] D. Yu, G. H. Wang, and S. X. Wu, “ Chemical Sensors”, J. Sensor & Transducer Tech., No.3 , 53-57,1991.
    [24] 謝博生,”臨床內科學(二)檢驗篇” ,金名出版社, 847-900,1990.
    [25] 電化學原理與方法/胡啟章編著 五南圖書出版股份有限公司 2002
    [26] D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans., 70,1974,1807-1818
    [27] L. Bouss, N. F. Rooij and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, IEEE Trans. Electron Device, ED-30,1983, 1263-1270
    [28] S. Levine and A. L. Smith,Theory of the differential capacity of the oxide/aqueous electrolyte interface , Disc. Faraday Soc., 52, 1971,290-301
    [29] J. A. Davis, R. O. James and J. O. Leckie, Surface ionization and complexation at the oxide/water interface, J. Colloid Interface Sci.,63,1978,480-499
    [30] T. Hiemstra,J. C. M. De Wit and W. H. Van Riemsdijk, Multisite proton adsorption modeling at the solid/solution interface of (hydr) oxide : A new approach , J. Colloid Interface Sci.,133,1989,105-117
    [31] R. E. G. van Hal, J. C. T. Eijkel and P. Bergveld, A novel description of ISFET
    sensitivity with the buffer capacity and double-layer capacity as key parameters, Sensors and Actuators B, 24-25,1995, 201-205.
    [32] Duncan J. Shaw著,張有義,郭蘭生編譯,膠體及界面化學入門,高立圖書有限公司,1997
    [33] D.R.Crow著,黃進益譯,電化學的原理及應用,高立圖書有限公司,1998
    [34] L. Bouss, S. Mostarshed, B. van der Schoot, N. F. de Rooij, P. Gimmei and W. Gopel, Zeta potential measurement of Ta2O ,and SiO2 thin film, J. Colloid Interface Sci., 147,1991,91-104
    [35] D. E. Yate, S. Levine and T.W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc. Faraday Trans. I, 70 ,1974, 1807-1818.
    [36] E. Gileadi, E. Kirowa-Eisner and J. Penciner, “Interfacial electrochemistry, an experimental approach”, Addison-Wesley Publish Company, INC., (1975) 4-6.
    [37] P. f, “Development of an Ion Sensitive Solid-State Device for Neurophysiological Measurement”, IEEE Trans.Biomed.Eng.,vol.17,1970, 70-71
    [38] S.M. Sze, Semiconductor devices, physics and technology ,Wiley, 2002.
    [39] Ben G. Streetman and Sanjay Banerjee ,Solid state electronic devices , Prentice Hall,2000.
    [40] D. K. Schroder, Semiconductor material and device characterization , Wiley,1998
    [41] Y. Ma, T. Yasuda, and G. Lucovsky, “Fixed and Trapped Charges at Oxide-Nitride-Oxide Heterostructure Interfaces Formed by Remote Plasma Enhanced Chemical Vapor Deposition”, J. Vac.Sci. Technol. B 11(4), 1533-1540(1993)
    [42] Y. Ma, T. Yasuda, and G. Lucovsky, “Formation of Device-Quality Metal-Insulator-Semiconductor Structures with Oxide-Nitride-Oxide Dielectric by Low-Temperature Plasma-Assisted Processing”, Combined with High-Temperature Rapid Thermal Annealing, J. Vac. Sci. Technol. A 11(4), 952-958(1993)
    [43 ] J. W. Lee, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S.J. Pearton and F. Ren, “Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition”, J. of the Elect. Sci. 147(4), 1481-1486(2000)
    [44] J. Yota, J. Hander, A. A. Saleh, “A Comparative Study on Inductively-Coupled Plasma High-Density Plasma, Plasma-Enhanced, and Low Pressure Chemical Vapor Deposition Silicon Nitride Films”, J. Vac. Sci. Technol. A 18(2),372-375(2000)
    [45] J. Yota, M. Janani, L. E. Camilletti, A. Kar-Roy, Q. Z. Liu, C. Nguyen and M. D. Woo, “Comparison Between HDPCVD and PECVD Silicon Nitride for Advanced Interconnect Applications”, IEEE, 76-78(2000)
    [46] R. K. Pandey, L. S. Patil, J. P. Bange, D. R. Patil, A. M. Mahajan, D. S. Patil, D. K. Gautam, “Growth and characterization of SiON thin films by using thermal-CVD machine”, Optical materials 25,2004,1-7
    [47] D. Criado, I. Pereyra, M. I. Alayo, “Study of nitrogen-rich silicon oxynitride films obtained by PECVD’’, Materials Characterization 50,2003,167-171
    [48] Yong Sun ,Tatsuro Miyasato,J. Keith Wigmore, “Characterization of excess carbon in cubic SiC film by infrared absorption’’, J. of applied physics 85,1999,3377-3379
    [49] M. Lattemann, E. Nold, S. Ulrich, H. Leiste, H. Holleck, “Investigation and characterization of silicon nitride and silicon carbide thin film’’, Surface and coatings technology 174-175,2003,365-369
    [50] N. J. Renault, A. De, P. Clechet and A. Maaref, "Study of the Nitride/Aqueous Electrolyte Interface on Collidal Aqueous Suspensions and on Electrolyte/Insulator/Semiconductor Structure", Colloids and Surfaces ,36,1989,59-68

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE